Nuprl Lemma : vs-subtract-self

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  ((x x) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-subtract: (x y) vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng prop: squash: T member: t ∈ T uall: [x:A]. B[x] vs-subtract: (x y)
Lemmas referenced :  vs-mul-zero rng_wf vector-space_wf vs-point_wf iff_weakening_equal vs-0_wf rng_minus_wf rng_one_wf vs-mul-add true_wf squash_wf equal_wf vs-mul_wf rng_car_wf rng_sig_wf rng_plus_inv vs-mul-one vs-add_wf
Rules used in proof :  dependent_functionElimination axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality rename setElimination because_Cache universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    ((x  -  x)  =  0)



Date html generated: 2018_05_22-PM-09_42_56
Last ObjectModification: 2018_01_09-PM-02_15_57

Theory : linear!algebra


Home Index