Nuprl Lemma : presheaf-type-rev-iso_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  (presheaf-type-rev-iso(X) ∈ {X ⊢ _} ⟶ presheaf_type{i:l}(C; X))
Proof
Definitions occuring in Statement : 
presheaf-type-rev-iso: presheaf-type-rev-iso(X), 
presheaf-type: {X ⊢ _}, 
presheaf_type: presheaf_type{i:l}(C; X), 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
presheaf-type: {X ⊢ _}, 
presheaf-type-rev-iso: presheaf-type-rev-iso(X), 
presheaf_type: presheaf_type{i:l}(C; X), 
pi1: fst(t), 
pi2: snd(t), 
mk-presheaf: mk-presheaf, 
presheaf: Presheaf(C), 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cat-ob: cat-ob(C), 
type-cat: TypeCat, 
uimplies: b supposing a, 
I_set: A(I), 
ps_context: __⊢, 
functor-ob: ob(F), 
compose: f o g, 
guard: {T}, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
prop: ℙ, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
op-cat_wf, 
sets_wf, 
ps_context_cumulativity2, 
type-cat_wf, 
cat_ob_op_lemma, 
sets-ob, 
pi1_wf_top, 
cat-ob_wf, 
pi2_wf, 
I_set_wf, 
subtype_rel_universe1, 
op-cat-arrow, 
sets-arrow, 
cat_arrow_triple_lemma, 
subtype_rel-equal, 
psc-restriction_wf, 
cat-arrow_wf, 
functor-ob_wf, 
subtype_rel_self, 
op-cat-comp, 
sets-comp, 
cat_comp_tuple_lemma, 
op-cat-id, 
sets-id, 
cat_id_tuple_lemma, 
mk-functor_wf, 
psc-restriction-comp, 
equal_wf, 
cat-comp_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
Error :memTop, 
independent_pairEquality, 
cumulativity, 
lambdaEquality_alt, 
because_Cache, 
productIsType, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityIstype, 
applyLambdaEquality, 
setIsType, 
universeEquality, 
lambdaFormation_alt, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].
    (presheaf-type-rev-iso(X)  \mmember{}  \{X  \mvdash{}  \_\}  {}\mrightarrow{}  presheaf\_type\{i:l\}(C;  X))
Date html generated:
2020_05_20-PM-01_25_37
Last ObjectModification:
2020_04_02-AM-10_47_27
Theory : presheaf!models!of!type!theory
Home
Index