Nuprl Lemma : Degree-implies-BrowerFPT-ext
∀n:ℕ. BrouwerFPT(n + 1) supposing ¬¬DegreeExists(n)
Proof
Definitions occuring in Statement : 
DegreeExists: DegreeExists(n), 
BrouwerFPT: BrouwerFPT(n), 
nat: ℕ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
not: ¬A, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
Degree-implies-BrowerFPT, 
NoBallRetraction-implies-BrouwerFPT, 
approx-fixpoint-unit-ball-2
Lemmas referenced : 
Degree-implies-BrowerFPT, 
NoBallRetraction-implies-BrouwerFPT, 
approx-fixpoint-unit-ball-2
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}n:\mBbbN{}.  BrouwerFPT(n  +  1)  supposing  \mneg{}\mneg{}DegreeExists(n)
Date html generated:
2019_10_30-AM-11_30_20
Last ObjectModification:
2019_08_06-PM-01_44_53
Theory : real!vectors
Home
Index