Nuprl Lemma : NoBallRetraction-implies-BrouwerFPT

n:ℕBrouwerFPT(n) supposing NoBallRetraction(n)


Proof




Definitions occuring in Statement :  NoBallRetraction: NoBallRetraction(n) BrouwerFPT: BrouwerFPT(n) nat: uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T NoBallRetraction: NoBallRetraction(n) not: ¬A implies:  Q false: False BrouwerFPT: BrouwerFPT(n) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B real-unit-ball: B(n) prop: nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) guard: {T} top: Top real-vec-sep: a ≠ b le: A ≤ B less_than': less_than'(a;b) real-vec: ^n int_seg: {i..j-} rless: x < y sq_exists: x:A [B[x]] nat_plus: + ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T ext-eq: A ≡ B iff: ⇐⇒ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) req_int_terms: t1 ≡ t2 rge: x ≥ y rev_implies:  Q assert: b ifthenelse: if then else fi  nonneg-poly: nonneg-poly(p) bl-all: (∀x∈L.P[x])_b reduce: reduce(f;k;as) list_ind: list_ind int_term_to_ipoly: int_term_to_ipoly(t) int_term_ind: int_term_ind itermSubtract: left (-) right add_ipoly: add_ipoly(p;q) add-ipoly-prepend: add-ipoly-prepend(p;q;l) itermMultiply: left (*) right mul_ipoly: mul_ipoly(p;q) itermVar: vvar cons: [a b] cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L) nil: [] it: mul-mono-poly: mul-mono-poly(m;p) mul-monomials: mul-monomials(m1;m2) merge-int-accum: merge-int-accum(as;bs) eager-accum: eager-accum(x,a.f[x; a];y;l) callbyvalueall: callbyvalueall evalall: evalall(t) insert-int: insert-int(x;l) minus-poly: minus-poly(p) map: map(f;as) itermConstant: "const" rev-append: rev(as) bs list_accum: list_accum band: p ∧b q nonneg-monomial: nonneg-monomial(m) le_int: i ≤j bnot: ¬bb lt_int: i <j bfalse: ff btrue: tt even-int-list: even-int-list(L) bor: p ∨bq null: null(as) tl: tl(l) pi2: snd(t) eq_int: (i =z j) hd: hd(l) pi1: fst(t) true: True rneq: x ≠ y req-vec: req-vec(n;x;y) real-vec-sub: Y real-vec-mul: a*X real-vec-add: Y quadratic1: quadratic1(a;b;c) rdiv: (x/y)
Lemmas referenced :  approx-fixpoint-unit-ball-2 real-unit-ball_wf real-vec-sep_wf req-vec_wf istype-void real_wf rless_wf int-to-real_wf NoBallRetraction_wf istype-nat decidable__equal_int subtype_base_sq int_subtype_base real-unit-ball-0 real-vec-dist_wf istype-le int_seg_properties nat_plus_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf itermAdd_wf int_term_value_add_lemma rless_functionality req_weakening real-vec-dist-dim0 real-vec-sep-iff-dot-product radd-preserves-rleq rsub_wf dot-product_wf radd_wf itermSubtract_wf rnexp_wf real-vec-norm_wf sq_stable__rleq real-vec-norm-nonneg rleq_weakening_equal rleq_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_var_lemma req_inversion real-vec-norm-squared rleq_functionality_wrt_implies rnexp_functionality_wrt_rleq rnexp-one dot-product-nonneg real-vec-sub_wf rmul_preserves_rleq2 rleq_wf rmul_wf itermMultiply_wf rleq-int istype-false real-term-nonneg real_term_value_mul_lemma rsub_functionality_wrt_rleq quadratic-formula1 quadratic1_wf req_wf quadratic2_wf real-vec-norm-eq-iff real-vec-add_wf real-vec-mul_wf dot-product-comm rnexp2 req-implies-req req_functionality req_transitivity dot-product-linearity1 radd_functionality dot-product-linearity2 rmul_functionality real-vec-sub_functionality req-vec_weakening rsub_functionality dot-product_functionality req-vec_functionality real-vec-add_functionality real-vec-mul_functionality quadratic1_functionality rleq_weakening rnexp_functionality rmul_preserves_rless rless-int equal_wf dot-product-linearity1-sub rdiv_wf rminus_wf rsqrt_wf rdiv_functionality radd-preserves-req itermMinus_wf real_term_value_minus_lemma square-nonneg rsqrt_functionality rsqrt-of-square rless_transitivity2 rleq_weakening_rless rinv_wf2 rinv-of-rmul rmul-rinv rmul-rinv3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality voidElimination functionIsTypeImplies inhabitedIsType rename extract_by_obid setElimination dependent_set_memberEquality_alt hypothesis independent_pairFormation functionIsType universeIsType isectElimination applyEquality because_Cache productIsType setIsType natural_numberEquality unionElimination instantiate cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry isect_memberEquality_alt functionExtensionality productElimination approximateComputation dependent_pairFormation_alt int_eqEquality imageElimination imageMemberEquality baseClosed equalityIstype promote_hyp inrFormation_alt closedConclusion inlFormation_alt hyp_replacement applyLambdaEquality functionEquality

Latex:
\mforall{}n:\mBbbN{}.  BrouwerFPT(n)  supposing  NoBallRetraction(n)



Date html generated: 2019_10_30-AM-11_29_51
Last ObjectModification: 2019_07_30-PM-01_05_02

Theory : real!vectors


Home Index