Nuprl Lemma : rsqrt-of-square

[x:{x:ℝr0 ≤ x} ]. (rsqrt(x x) x)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rsqrt-unique square-nonneg rmul_wf rleq_wf int-to-real_wf rmul_comm req_inversion rsqrt_wf req_witness set_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis dependent_set_memberEquality setElimination rename hypothesisEquality natural_numberEquality independent_isectElimination applyEquality sqequalRule independent_functionElimination lambdaEquality

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x  *  x)  =  x)



Date html generated: 2016_10_26-AM-10_09_21
Last ObjectModification: 2016_09_06-PM-07_00_25

Theory : reals


Home Index