Nuprl Lemma : rsqrt-of-square
∀[x:{x:ℝ| r0 ≤ x} ]. (rsqrt(x * x) = x)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
rsqrt-unique, 
square-nonneg, 
rmul_wf, 
rleq_wf, 
int-to-real_wf, 
rmul_comm, 
req_inversion, 
rsqrt_wf, 
req_witness, 
set_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
lambdaEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x  *  x)  =  x)
Date html generated:
2016_10_26-AM-10_09_21
Last ObjectModification:
2016_09_06-PM-07_00_25
Theory : reals
Home
Index