Nuprl Lemma : real-vec-sep-iff-dot-product
∀n:ℕ. ∀x,y:ℝ^n.  (x ≠ y ⇐⇒ r0 < y - x⋅y - x)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b, 
dot-product: x⋅y, 
real-vec-sub: X - Y, 
real-vec: ℝ^n, 
rless: x < y, 
int-to-real: r(n), 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
rev_implies: P ⇐ Q, 
real-vec: ℝ^n, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
nat: ℕ, 
prop: ℙ, 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
less_than: a < b, 
squash: ↓T, 
real-vec-sub: X - Y, 
rsub: x - y, 
radd: a + b, 
accelerate: accelerate(k;f), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
real-vec-sep-iff, 
int-to-real_wf, 
int_seg_wf, 
real-vec-sep_wf, 
real-vec-sub_wf, 
real-vec-sep-0-iff, 
rless_wf, 
dot-product_wf, 
real-vec_wf, 
istype-nat, 
rabs_wf, 
rsub_wf, 
subtype_rel_self, 
real_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
rless_functionality, 
req_weakening, 
rabs-difference-symmetry, 
rabs_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
setElimination, 
rename, 
universeIsType, 
natural_numberEquality, 
independent_pairFormation, 
promote_hyp, 
dependent_pairFormation_alt, 
applyEquality, 
functionEquality, 
imageElimination, 
productIsType, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  r0  <  y  -  x\mcdot{}y  -  x)
Date html generated:
2019_10_30-AM-08_44_13
Last ObjectModification:
2019_07_29-PM-00_36_48
Theory : reals
Home
Index