Nuprl Lemma : Degree-implies-BrowerFPT

n:ℕBrouwerFPT(n 1) supposing ¬¬DegreeExists(n)


Proof




Definitions occuring in Statement :  DegreeExists: DegreeExists(n) BrouwerFPT: BrouwerFPT(n) nat: uimplies: supposing a all: x:A. B[x] not: ¬A add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False nat: uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: NoBallRetraction: NoBallRetraction(n) DegreeExists: DegreeExists(n) real-unit-ball: B(n) subtype_rel: A ⊆B compose: g cand: c∧ B req-vec: req-vec(n;x;y) so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] sq_stable: SqStable(P) squash: T guard: {T} i-member: r ∈ I rccint: [l, u] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y sphere-map-eq: sphere-map-eq(n;f;g) real-unit-sphere: S(n) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k const-sphere-map: const-sphere-map(p) real-vec-mul: a*X id-sphere-map: id-sphere-map()
Lemmas referenced :  NoBallRetraction-implies-BrouwerFPT nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le real-unit-ball_wf req-vec_wf req_wf real-vec-norm_wf int-to-real_wf DegreeExists_wf istype-nat sphere-map-from-ball-map compose_wf sq_stable__all int_seg_wf sq_stable__req req_witness real-vec-mul_wf rleq_wf real_wf i-member_wf rccint_wf rmul_wf rabs_wf rmul_preserves_rleq2 zero-rleq-rabs itermSubtract_wf itermMultiply_wf rleq_functionality real-vec-norm-mul req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality_wrt_implies rleq_weakening_equal rabs-of-nonneg real-vec-mul_functionality real-unit-sphere-subtype-ball real-unit-sphere_wf req-vec_weakening member_rccint_lemma int_subtype_base rleq-int istype-false real-vec-norm-0 const-sphere-map_wf rmul-identity1 id-sphere-map_wf req-vec_functionality extensional-discrete-real-fun-is-constant intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality voidElimination functionIsTypeImplies inhabitedIsType rename extract_by_obid dependent_set_memberEquality_alt addEquality setElimination hypothesis natural_numberEquality isectElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt independent_pairFormation universeIsType promote_hyp productElimination because_Cache productIsType functionIsType applyEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination setIsType functionExtensionality equalityIstype sqequalBase

Latex:
\mforall{}n:\mBbbN{}.  BrouwerFPT(n  +  1)  supposing  \mneg{}\mneg{}DegreeExists(n)



Date html generated: 2019_10_30-AM-11_30_17
Last ObjectModification: 2019_08_06-PM-01_01_29

Theory : real!vectors


Home Index