Nuprl Lemma : DegreeExists_wf
∀[n:ℕ]. (DegreeExists(n) ∈ ℙ)
Proof
Definitions occuring in Statement : 
DegreeExists: DegreeExists(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
DegreeExists: DegreeExists(n)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sphere-map: sphere-map(n)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sphere-map_wf, 
sphere-map-eq_wf, 
equal-wf-base, 
int_subtype_base, 
real-unit-sphere_wf, 
const-sphere-map_wf, 
id-sphere-map_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (DegreeExists(n)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-11_30_11
Last ObjectModification:
2019_08_06-AM-11_41_55
Theory : real!vectors
Home
Index