Nuprl Lemma : DegreeExists_wf

[n:ℕ]. (DegreeExists(n) ∈ ℙ)


Proof




Definitions occuring in Statement :  DegreeExists: DegreeExists(n) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T DegreeExists: DegreeExists(n) prop: exists: x:A. B[x] and: P ∧ Q all: x:A. B[x] implies:  Q sphere-map: sphere-map(n) subtype_rel: A ⊆B
Lemmas referenced :  sphere-map_wf sphere-map-eq_wf equal-wf-base int_subtype_base real-unit-sphere_wf const-sphere-map_wf id-sphere-map_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality setElimination rename applyEquality baseClosed axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (DegreeExists(n)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_30_11
Last ObjectModification: 2019_08_06-AM-11_41_55

Theory : real!vectors


Home Index