Nuprl Lemma : sphere-map-eq_wf

[n:ℕ]. ∀[f,g:S(n) ⟶ S(n)].  (sphere-map-eq(n;f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  sphere-map-eq: sphere-map-eq(n;f;g) real-unit-sphere: S(n) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sphere-map-eq: sphere-map-eq(n;f;g) prop: all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q subtype_rel: A ⊆B real-unit-sphere: S(n)
Lemmas referenced :  real-unit-sphere_wf req-vec_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality_alt addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isectIsTypeImplies functionIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:S(n)  {}\mrightarrow{}  S(n)].    (sphere-map-eq(n;f;g)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-10_15_27
Last ObjectModification: 2019_07_30-PM-02_18_13

Theory : real!vectors


Home Index