Nuprl Lemma : id-sphere-map_wf
∀[n:ℕ]. (id-sphere-map() ∈ sphere-map(n))
Proof
Definitions occuring in Statement : 
id-sphere-map: id-sphere-map()
, 
sphere-map: sphere-map(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sphere-map: sphere-map(n)
, 
id-sphere-map: id-sphere-map()
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
real-unit-sphere: S(n)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
guard: {T}
Lemmas referenced : 
real-unit-sphere_wf, 
rleq_wf, 
real-vec-dist_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
rdiv_wf, 
rneq-int, 
nat_plus_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
rless_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
applyEquality, 
productElimination, 
inhabitedIsType, 
functionIsType, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  (id-sphere-map()  \mmember{}  sphere-map(n))
Date html generated:
2019_10_30-AM-10_15_36
Last ObjectModification:
2019_07_30-PM-02_28_04
Theory : real!vectors
Home
Index