Nuprl Lemma : id-sphere-map_wf

[n:ℕ]. (id-sphere-map() ∈ sphere-map(n))


Proof




Definitions occuring in Statement :  id-sphere-map: id-sphere-map() sphere-map: sphere-map(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sphere-map: sphere-map(n) id-sphere-map: id-sphere-map() all: x:A. B[x] exists: x:A. B[x] implies:  Q nat: nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q prop: real-unit-sphere: S(n) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q rneq: x ≠ y guard: {T}
Lemmas referenced :  real-unit-sphere_wf rleq_wf real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le rdiv_wf rneq-int nat_plus_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt hypothesisEquality universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaFormation_alt dependent_pairFormation_alt addEquality setElimination rename because_Cache natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality productElimination inhabitedIsType functionIsType productIsType closedConclusion inrFormation_alt axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (id-sphere-map()  \mmember{}  sphere-map(n))



Date html generated: 2019_10_30-AM-10_15_36
Last ObjectModification: 2019_07_30-PM-02_28_04

Theory : real!vectors


Home Index