Nuprl Lemma : extensional-discrete-real-fun-is-constant
∀a,b:ℝ. ∀f:{x:ℝ| x ∈ [a, b]}  ⟶ ℤ.
  ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((f x) = (f y) ∈ ℤ) supposing ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((x = y) 
⇒ ((f x) = (f y) ∈ ℤ))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-member: r ∈ I
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
real-fun: real-fun(f;a;b)
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real-cont: real-cont(f;a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rneq: x ≠ y
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
sq_type: SQType(T)
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
rbetween: x≤y≤z
, 
rev_uimplies: rev_uimplies(P;Q)
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
label: ...$L... t
, 
full-partition: full-partition(I;p)
, 
partition: partition(I)
Lemmas referenced : 
real-fun-iff-continuous, 
member_rccint_lemma, 
rleq_transitivity, 
int-to-real_wf, 
real_wf, 
rleq_wf, 
i-member_wf, 
rccint_wf, 
req-int, 
req_wf, 
set_wf, 
all_wf, 
equal_wf, 
less_than_wf, 
rabs_wf, 
rsub_wf, 
decidable__equal_int, 
subtract-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
subtract_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rleq_functionality, 
rabs_functionality, 
rsub-int, 
req_weakening, 
rmul_preserves_rleq2, 
rleq-int, 
less_than'_wf, 
rmul_wf, 
nat_plus_wf, 
absval_wf, 
nat_wf, 
itermMultiply_wf, 
rinv_wf2, 
req_transitivity, 
squash_wf, 
true_wf, 
rabs-int, 
rmul-int, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
absval_unfold, 
decidable__lt, 
top_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
itermMinus_wf, 
int_term_value_minus_lemma, 
partition-exists, 
rccint-icompact, 
list_set_type, 
full-partition_wf, 
full-partition-point-member, 
mesh-property, 
int_seg_properties, 
length_wf, 
int_seg_wf, 
le_wf, 
nat_properties, 
ge_wf, 
decidable__le, 
select_wf, 
nat_plus_properties, 
subtype_base_sq, 
int_subtype_base, 
sq_stable__less_than, 
adjacent-full-partition-points, 
lelt_wf, 
subtract-add-cancel, 
rbetween_wf, 
partition-mesh_wf, 
rabs-of-nonneg, 
sq_stable__rleq, 
iff_weakening_equal, 
length_of_cons_lemma, 
right_endpoint_rccint_lemma, 
add_nat_plus, 
length_wf_nat, 
append_wf, 
cons_wf, 
nil_wf, 
length-append, 
length_of_nil_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberFormation, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_isectElimination, 
productElimination, 
isectElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
productEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
axiomEquality, 
because_Cache, 
functionEquality, 
intEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
inrFormation, 
independent_pairEquality, 
minusEquality, 
multiplyEquality, 
imageElimination, 
lessCases, 
sqequalAxiom, 
intWeakElimination, 
instantiate, 
cumulativity, 
addEquality, 
universeEquality, 
applyLambdaEquality
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbZ{}.
    \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((f  x)  =  (f  y)) 
    supposing  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))
Date html generated:
2017_10_03-AM-09_59_57
Last ObjectModification:
2017_06_01-PM-04_32_03
Theory : reals
Home
Index