Nuprl Lemma : real-vec-norm-0
∀[n:ℕ]. (||λi.r0|| = r0)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
req-vec: req-vec(n;x;y), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
nat: ℕ, 
uimplies: b supposing a
Lemmas referenced : 
req_witness, 
int-to-real_wf, 
istype-nat, 
iff_weakening_uiff, 
req_wf, 
real-vec-norm_wf, 
req-vec_wf, 
real-vec-norm-is-0, 
int_seg_wf, 
req-vec_weakening
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
productElimination, 
setElimination, 
rename, 
universeIsType, 
independent_isectElimination
Latex:
\mforall{}[n:\mBbbN{}].  (||\mlambda{}i.r0||  =  r0)
Date html generated:
2019_10_30-AM-08_08_00
Last ObjectModification:
2019_06_24-PM-04_36_09
Theory : reals
Home
Index