Nuprl Lemma : in-cube-complex_wf
∀[k:ℕ]. ∀[p:ℝ^k]. ∀[cc:RealCubeComplex(k)].  (in-cube-complex(k;p;cc) ∈ ℙ)
Proof
Definitions occuring in Statement : 
in-cube-complex: in-cube-complex(k;p;cc)
, 
real-cube-complex: RealCubeComplex(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
in-cube-complex: in-cube-complex(k;p;cc)
, 
spreadn: spread4, 
real-cube-complex: RealCubeComplex(k)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
in-real-cube_wf, 
real-cube-complex_wf, 
real-vec_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[cc:RealCubeComplex(k)].    (in-cube-complex(k;p;cc)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-11_31_49
Last ObjectModification:
2019_09_30-AM-11_22_44
Theory : real!vectors
Home
Index