Nuprl Lemma : in-cube-complex_wf

[k:ℕ]. ∀[p:ℝ^k]. ∀[cc:RealCubeComplex(k)].  (in-cube-complex(k;p;cc) ∈ ℙ)


Proof




Definitions occuring in Statement :  in-cube-complex: in-cube-complex(k;p;cc) real-cube-complex: RealCubeComplex(k) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T in-cube-complex: in-cube-complex(k;p;cc) spreadn: spread4 real-cube-complex: RealCubeComplex(k) prop: exists: x:A. B[x]
Lemmas referenced :  in-real-cube_wf real-cube-complex_wf real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution productElimination thin productEquality hypothesisEquality extract_by_obid isectElimination applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[cc:RealCubeComplex(k)].    (in-cube-complex(k;p;cc)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_31_49
Last ObjectModification: 2019_09_30-AM-11_22_44

Theory : real!vectors


Home Index