Nuprl Lemma : real-cube-complex_wf

[k:ℕ]. (RealCubeComplex(k) ∈ 𝕌')


Proof




Definitions occuring in Statement :  real-cube-complex: RealCubeComplex(k) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-cube-complex: RealCubeComplex(k) prop: all: x:A. B[x] implies:  Q or: P ∨ Q
Lemmas referenced :  finite_wf real-cube_wf not_wf equal_wf adjacent-cubes_wf real-cube-sep_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality universeEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality unionEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[k:\mBbbN{}].  (RealCubeComplex(k)  \mmember{}  \mBbbU{}')



Date html generated: 2019_10_30-AM-11_31_43
Last ObjectModification: 2019_09_30-AM-11_19_24

Theory : real!vectors


Home Index