Nuprl Lemma : real-cube-complex_wf
∀[k:ℕ]. (RealCubeComplex(k) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
real-cube-complex: RealCubeComplex(k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-cube-complex: RealCubeComplex(k)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Lemmas referenced : 
finite_wf, 
real-cube_wf, 
not_wf, 
equal_wf, 
adjacent-cubes_wf, 
real-cube-sep_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
universeEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
unionEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[k:\mBbbN{}].  (RealCubeComplex(k)  \mmember{}  \mBbbU{}')
Date html generated:
2019_10_30-AM-11_31_43
Last ObjectModification:
2019_09_30-AM-11_19_24
Theory : real!vectors
Home
Index