Nuprl Lemma : real-cube-sep_wf

[k:ℕ]. ∀[c1,c2:real-cube(k)].  (c1 c2 ∈ ℙ)


Proof




Definitions occuring in Statement :  real-cube-sep: c1 c2 real-cube: real-cube(k) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-cube-sep: c1 c2 prop: exists: x:A. B[x] nat: or: P ∨ Q subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T
Lemmas referenced :  int_seg_wf rless_wf cube-upper_wf subtype_rel_self real_wf cube-lower_wf real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis unionEquality applyEquality functionEquality productElimination imageElimination axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (c1  \#  c2  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_31_26
Last ObjectModification: 2019_09_27-PM-01_28_26

Theory : real!vectors


Home Index