Nuprl Lemma : adjacent-cubes_wf

[k:ℕ]. ∀[c1,c2:real-cube(k)].  (adjacent-cubes(k;c1;c2) ∈ ℙ)


Proof




Definitions occuring in Statement :  adjacent-cubes: adjacent-cubes(k;c1;c2) real-cube: real-cube(k) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T adjacent-cubes: adjacent-cubes(k;c1;c2) nat: so_lambda: λ2x.t[x] prop: and: P ∧ Q implies:  Q subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T or: P ∨ Q
Lemmas referenced :  exists_wf int_seg_wf all_wf not_wf equal-wf-base req_wf cube-lower_wf cube-upper_wf or_wf subtype_rel_self real_wf real-cube_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality_alt productEquality functionEquality applyEquality hypothesisEquality inhabitedIsType productElimination imageElimination universeIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c1,c2:real-cube(k)].    (adjacent-cubes(k;c1;c2)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-11_31_36
Last ObjectModification: 2019_09_27-PM-01_35_30

Theory : real!vectors


Home Index