Nuprl Lemma : sq_stable__in-rat-cube

[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].  SqStable(in-rat-cube(k;p;c))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n nat: sq_stable: SqStable(P) uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  uimplies: supposing a le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y sq_stable: SqStable(P) so_apply: x[s] pi2: snd(t) real-vec: ^n pi1: fst(t) rational-interval: Interval implies:  Q all: x:A. B[x] rational-cube: Cube(k) and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: in-rat-cube: in-rat-cube(k;p;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat real-vec_wf rational-cube_wf le_witness_for_triv sq_stable__rleq sq_stable__and rat2real_wf rleq_wf int_seg_wf sq_stable__all
Rules used in proof :  isectIsTypeImplies functionIsTypeImplies independent_isectElimination independent_pairEquality isect_memberEquality_alt universeIsType because_Cache independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype productElimination lambdaFormation_alt inhabitedIsType applyEquality productEquality lambdaEquality_alt sqequalRule hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].    SqStable(in-rat-cube(k;p;c))



Date html generated: 2019_10_30-AM-10_12_49
Last ObjectModification: 2019_10_27-AM-00_04_13

Theory : real!vectors


Home Index