Nuprl Lemma : stable__in-rat-cube
∀[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].  Stable{in-rat-cube(k;p;c)}
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
real-vec: ℝ^n
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rational-cube: ℚCube(k)
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
real-vec_wf, 
rational-cube_wf, 
le_witness_for_triv, 
stable__rleq, 
stable__and, 
rat2real_wf, 
rleq_wf, 
int_seg_wf, 
stable__all
Rules used in proof : 
isectIsTypeImplies, 
functionIsTypeImplies, 
independent_isectElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
productElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
applyEquality, 
productEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].    Stable\{in-rat-cube(k;p;c)\}
Date html generated:
2019_11_04-PM-04_43_16
Last ObjectModification:
2019_10_31-PM-04_14_52
Theory : real!vectors
Home
Index