Nuprl Lemma : stable__rleq

[x,y:ℝ].  Stable{x ≤ y}


Proof




Definitions occuring in Statement :  rleq: x ≤ y real: stable: Stable{P} uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stable: Stable{P} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] real: decidable: Dec(P) or: P ∨ Q not: ¬A prop: false: False rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  rleq-iff4 decidable__le rleq_wf nat_plus_wf not_wf less_than'_wf rsub_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination lambdaFormation dependent_functionElimination applyEquality setElimination rename addEquality natural_numberEquality unionElimination voidElimination sqequalRule lambdaEquality independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality minusEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    Stable\{x  \mleq{}  y\}



Date html generated: 2016_10_26-AM-09_06_33
Last ObjectModification: 2016_09_26-PM-00_35_12

Theory : reals


Home Index