Nuprl Lemma : vec-midpoint-symmetry
∀[n:ℕ]. ∀[a,b:ℝ^n].  req-vec(n;vec-midpoint(b;a);vec-midpoint(a;b))
Proof
Definitions occuring in Statement : 
vec-midpoint: vec-midpoint(a;b), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
vec-midpoint: vec-midpoint(a;b), 
req-vec: req-vec(n;x;y), 
real-vec-add: X + Y, 
real-vec-mul: a*X, 
all: ∀x:A. B[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
real-vec: ℝ^n, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ
Lemmas referenced : 
int_seg_wf, 
req_witness, 
vec-midpoint_wf, 
real-vec_wf, 
nat_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
radd_wf, 
req_weakening, 
radd_comm, 
rmul_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
inrFormation, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbR{}\^{}n].    req-vec(n;vec-midpoint(b;a);vec-midpoint(a;b))
Date html generated:
2016_10_28-AM-07_42_40
Last ObjectModification:
2016_09_28-PM-04_29_13
Theory : reals!model!euclidean!geometry
Home
Index