Step * 1 1 1 1 2 of Lemma IVT-locally-non-constant-open


1. : ℝ
2. {b:ℝa < b} 
3. [a, b] ⟶ℝ
4. (a, b) ⊆ [a, b] 
5. a < b
6. ∀a',b':ℝ.  (((a < a') ∧ (a' < b') ∧ (b' < b))  (∀c:ℝlocally-non-constant(f;a';b';c)))
7. : ℝ
8. f(a) < c
9. c < f(b)
10. : ℕ+
11. (r1/r(k)) < (c f(a))
12. : ℝ
13. r0 < d
14. ∀x,y:ℝ.  (((a ≤ x) ∧ (x ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|x y| ≤ d)  (|f[x] f[y]| ≤ (r1/r(k))))
15. a < ravg(a;b)
16. ravg(a;b) < b
17. a < rmin(a d;ravg(a;b))
18. rmin(a d;ravg(a;b)) < b
19. |f[a] f[rmin(a d;ravg(a;b))]| ≤ (r1/r(k))
20. a < rmin(a d;ravg(a;b))
21. rmin(a d;ravg(a;b)) < b
⊢ f(rmin(a d;ravg(a;b))) < c
BY
((RWO "rabs-difference-bound-rleq" (-3) THENA Auto) THEN -3) }

1
1. : ℝ
2. {b:ℝa < b} 
3. [a, b] ⟶ℝ
4. (a, b) ⊆ [a, b] 
5. a < b
6. ∀a',b':ℝ.  (((a < a') ∧ (a' < b') ∧ (b' < b))  (∀c:ℝlocally-non-constant(f;a';b';c)))
7. : ℝ
8. f(a) < c
9. c < f(b)
10. : ℕ+
11. (r1/r(k)) < (c f(a))
12. : ℝ
13. r0 < d
14. ∀x,y:ℝ.  (((a ≤ x) ∧ (x ≤ b))  ((a ≤ y) ∧ (y ≤ b))  (|x y| ≤ d)  (|f[x] f[y]| ≤ (r1/r(k))))
15. a < ravg(a;b)
16. ravg(a;b) < b
17. a < rmin(a d;ravg(a;b))
18. rmin(a d;ravg(a;b)) < b
19. (f[rmin(a d;ravg(a;b))] (r1/r(k))) ≤ f[a]
20. f[a] ≤ (f[rmin(a d;ravg(a;b))] (r1/r(k)))
21. a < rmin(a d;ravg(a;b))
22. rmin(a d;ravg(a;b)) < b
⊢ f(rmin(a d;ravg(a;b))) < c


Latex:


Latex:

1.  a  :  \mBbbR{}
2.  b  :  \{b:\mBbbR{}|  a  <  b\} 
3.  f  :  [a,  b]  {}\mrightarrow{}\mBbbR{}
4.  (a,  b)  \msubseteq{}  [a,  b] 
5.  a  <  b
6.  \mforall{}a',b':\mBbbR{}.    (((a  <  a')  \mwedge{}  (a'  <  b')  \mwedge{}  (b'  <  b))  {}\mRightarrow{}  (\mforall{}c:\mBbbR{}.  locally-non-constant(f;a';b';c)))
7.  c  :  \mBbbR{}
8.  f(a)  <  c
9.  c  <  f(b)
10.  k  :  \mBbbN{}\msupplus{}
11.  (r1/r(k))  <  (c  -  f(a))
12.  d  :  \mBbbR{}
13.  r0  <  d
14.  \mforall{}x,y:\mBbbR{}.
            (((a  \mleq{}  x)  \mwedge{}  (x  \mleq{}  b))  {}\mRightarrow{}  ((a  \mleq{}  y)  \mwedge{}  (y  \mleq{}  b))  {}\mRightarrow{}  (|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|f[x]  -  f[y]|  \mleq{}  (r1/r(k))))
15.  a  <  ravg(a;b)
16.  ravg(a;b)  <  b
17.  a  <  rmin(a  +  d;ravg(a;b))
18.  rmin(a  +  d;ravg(a;b))  <  b
19.  |f[a]  -  f[rmin(a  +  d;ravg(a;b))]|  \mleq{}  (r1/r(k))
20.  a  <  rmin(a  +  d;ravg(a;b))
21.  rmin(a  +  d;ravg(a;b))  <  b
\mvdash{}  f(rmin(a  +  d;ravg(a;b)))  <  c


By


Latex:
((RWO  "rabs-difference-bound-rleq"  (-3)  THENA  Auto)  THEN  D  -3)




Home Index