Step
*
of Lemma
IVT-strict-decreasing
No Annotations
∀I:Interval. ∀f:I ⟶ℝ.
((∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f y) < (f x))))
⇒ (∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ ((f x) = (f y))))
⇒ (∀a,b:{x:ℝ| x ∈ I} .
((a < b)
⇒ (∀x:ℝ. ((((f b) ≤ x) ∧ (x ≤ (f a)))
⇒ (∃c:ℝ. (((a ≤ c) ∧ (c ≤ b)) ∧ ((f c) = x))))))))
BY
{ ((Auto
THEN (Assert [a, b] ⊆ I BY
(D 0 THEN Reduce 0 THEN Auto THEN InstLemma `i-member-between` [⌜I⌝;⌜a⌝;⌜b⌝]⋅ THEN Auto))
)
THEN (InstLemma `IVT-strict-increasing` [⌜I⌝;⌜λx.-(f x)⌝;⌜a⌝;⌜b⌝;⌜-(x)⌝]⋅ THENA Auto)
THEN All Reduce
THEN Auto) }
1
1. I : Interval
2. f : I ⟶ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f y) < (f x)))
4. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ ((f x) = (f y)))
5. a : {x:ℝ| x ∈ I}
6. b : {x:ℝ| x ∈ I}
7. a < b
8. x : ℝ
9. (f b) ≤ x
10. x ≤ (f a)
11. [a, b] ⊆ I
12. x1 : {x:ℝ| x ∈ I}
13. y : {x:ℝ| x ∈ I}
14. x1 < y
⊢ -(f x1) < -(f y)
2
1. I : Interval
2. f : I ⟶ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f y) < (f x)))
4. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ ((f x) = (f y)))
5. a : {x:ℝ| x ∈ I}
6. b : {x:ℝ| x ∈ I}
7. a < b
8. x : ℝ
9. (f b) ≤ x
10. x ≤ (f a)
11. [a, b] ⊆ I
12. ∃c:ℝ [(((a ≤ c) ∧ (c ≤ b)) ∧ (-(f c) = -(x)))]
⊢ ∃c:ℝ. (((a ≤ c) ∧ (c ≤ b)) ∧ ((f c) = x))
Latex:
Latex:
No Annotations
\mforall{}I:Interval. \mforall{}f:I {}\mrightarrow{}\mBbbR{}.
((\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x < y) {}\mRightarrow{} ((f y) < (f x))))
{}\mRightarrow{} (\mforall{}x,y:\{t:\mBbbR{}| t \mmember{} I\} . ((x = y) {}\mRightarrow{} ((f x) = (f y))))
{}\mRightarrow{} (\mforall{}a,b:\{x:\mBbbR{}| x \mmember{} I\} .
((a < b)
{}\mRightarrow{} (\mforall{}x:\mBbbR{}. ((((f b) \mleq{} x) \mwedge{} (x \mleq{} (f a))) {}\mRightarrow{} (\mexists{}c:\mBbbR{}. (((a \mleq{} c) \mwedge{} (c \mleq{} b)) \mwedge{} ((f c) = x))))))))
By
Latex:
((Auto
THEN (Assert [a, b] \msubseteq{} I BY
(D 0
THEN Reduce 0
THEN Auto
THEN InstLemma `i-member-between` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THEN Auto))
)
THEN (InstLemma `IVT-strict-increasing` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}\mlambda{}x.-(f x)\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}-(x)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN All Reduce
THEN Auto)
Home
Index