Step
*
1
1
of Lemma
alt-int-rdiv_wf
1. x : ℝ
2. k : ℕ+
3. k ≠ 1
4. alt-int-rdiv(x;k) ∈ ℕ+ ⟶ ℤ
5. n : ℕ+
6. m : ℕ+
7. (2 * |(k * [x n ÷ k]) - x n|) ≤ k
8. (2 * |(x m) - k * [x m ÷ k]|) ≤ k
⊢ (2 * ((|m| * |(k * [x n ÷ k]) - x n|) + (|n| * |(x m) - k * [x m ÷ k]|) + |(m * (x n)) - n * (x m)|)) ≤ (2
* k
* 2
* (n + m))
BY
{ ((Subst' |m| ~ m 0 THENA Auto) THEN (Subst' |n| ~ n 0 THENA Auto)) }
1
1. x : ℝ
2. k : ℕ+
3. k ≠ 1
4. alt-int-rdiv(x;k) ∈ ℕ+ ⟶ ℤ
5. n : ℕ+
6. m : ℕ+
7. (2 * |(k * [x n ÷ k]) - x n|) ≤ k
8. (2 * |(x m) - k * [x m ÷ k]|) ≤ k
⊢ (2 * ((m * |(k * [x n ÷ k]) - x n|) + (n * |(x m) - k * [x m ÷ k]|) + |(m * (x n)) - n * (x m)|)) ≤ (2
* k
* 2
* (n + m))
Latex:
Latex:
1. x : \mBbbR{}
2. k : \mBbbN{}\msupplus{}
3. k \mneq{} 1
4. alt-int-rdiv(x;k) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
5. n : \mBbbN{}\msupplus{}
6. m : \mBbbN{}\msupplus{}
7. (2 * |(k * [x n \mdiv{} k]) - x n|) \mleq{} k
8. (2 * |(x m) - k * [x m \mdiv{} k]|) \mleq{} k
\mvdash{} (2
* ((|m| * |(k * [x n \mdiv{} k]) - x n|)
+ (|n| * |(x m) - k * [x m \mdiv{} k]|)
+ |(m * (x n)) - n * (x m)|)) \mleq{} (2 * k * 2 * (n + m))
By
Latex:
((Subst' |m| \msim{} m 0 THENA Auto) THEN (Subst' |n| \msim{} n 0 THENA Auto))
Home
Index