Nuprl Lemma : alt-int-rdiv_wf

[x:ℝ]. ∀[k:ℕ+].  (alt-int-rdiv(x;k) ∈ {y:ℝx} )


Proof




Definitions occuring in Statement :  alt-int-rdiv: alt-int-rdiv(x;k) int-rmul: k1 a req: y real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T alt-int-rdiv: alt-int-rdiv(x;k) nat_plus: + real: false: False implies:  Q not: ¬A all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  regular-int-seq: k-regular-seq(f) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] squash: T nat: true: True iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) ge: i ≥  sq_stable: SqStable(P) le: A ≤ B bdd-diff: bdd-diff(f;g) accelerate: accelerate(k;f) int-rmul: k1 a has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) int_nzero: -o absval: |i|
Lemmas referenced :  rounding-div_wf eq_int_wf eqtt_to_assert assert_of_eq_int real-regular nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int mul_cancel_in_le absval_wf subtract_wf absval_nat_plus intformand_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma set_subtype_base less_than_wf int_subtype_base le_wf squash_wf true_wf absval_mul subtype_rel_self iff_weakening_equal nat_wf absval-non-neg absval_pos nat_plus_subtype_nat istype-le regular-int-seq_wf nat_plus_wf real_wf rounding-div-property absval-diff-symmetry decidable__equal_int itermMultiply_wf itermSubtract_wf itermAdd_wf int_term_value_mul_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le intformle_wf int_formula_prop_le_lemma le_functionality multiply_functionality_wrt_le le_weakening le_transitivity int-triangle-inequality add_functionality_wrt_le add_functionality_wrt_eq mul_preserves_le sq_stable__le multiply-is-int-iff false_wf req_wf int-rmul_wf int-rmul-one req-iff-bdd-diff accelerate-bdd-diff subtype_rel_sets_simple accelerate_wf bdd-diff_functionality bdd-diff_weakening bdd-diff_inversion nat_properties value-type-has-value int-value-type set-value-type istype-top mul_nat_plus divide_wfa nequal_wf div_rem_sum2 remainder_wfa rem_bounds_absval itermMinus_wf int_term_value_minus_lemma absval_sym sq_stable__less_than le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule int_eqEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis natural_numberEquality lambdaEquality_alt extract_by_obid isectElimination applyEquality inhabitedIsType dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry because_Cache lambdaFormation_alt unionElimination equalityElimination productElimination independent_isectElimination int_eqReduceTrueSq dependent_functionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt isect_memberEquality_alt voidElimination universeIsType equalityIstype promote_hyp instantiate cumulativity int_eqReduceFalseSq multiplyEquality addEquality independent_pairFormation intEquality baseClosed sqequalBase imageElimination imageMemberEquality universeEquality axiomEquality isectIsTypeImplies pointwiseFunctionality baseApply closedConclusion functionEquality functionIsType setEquality callbyvalueReduce sqleReflexivity lessCases axiomSqEquality applyLambdaEquality minusEquality

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (alt-int-rdiv(x;k)  \mmember{}  \{y:\mBbbR{}|  k  *  y  =  x\}  )



Date html generated: 2019_10_29-AM-09_33_25
Last ObjectModification: 2019_02_18-PM-03_34_55

Theory : reals


Home Index