Nuprl Lemma : alt-int-rdiv_wf
∀[x:ℝ]. ∀[k:ℕ+].  (alt-int-rdiv(x;k) ∈ {y:ℝ| k * y = x} )
Proof
Definitions occuring in Statement : 
alt-int-rdiv: alt-int-rdiv(x;k)
, 
int-rmul: k1 * a
, 
req: x = y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
alt-int-rdiv: alt-int-rdiv(x;k)
, 
nat_plus: ℕ+
, 
real: ℝ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
regular-int-seq: k-regular-seq(f)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
nat: ℕ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
sq_stable: SqStable(P)
, 
le: A ≤ B
, 
bdd-diff: bdd-diff(f;g)
, 
accelerate: accelerate(k;f)
, 
int-rmul: k1 * a
, 
has-value: (a)↓
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
int_nzero: ℤ-o
, 
absval: |i|
Lemmas referenced : 
rounding-div_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
real-regular, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
mul_cancel_in_le, 
absval_wf, 
subtract_wf, 
absval_nat_plus, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
le_wf, 
squash_wf, 
true_wf, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
nat_wf, 
absval-non-neg, 
absval_pos, 
nat_plus_subtype_nat, 
istype-le, 
regular-int-seq_wf, 
nat_plus_wf, 
real_wf, 
rounding-div-property, 
absval-diff-symmetry, 
decidable__equal_int, 
itermMultiply_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening, 
le_transitivity, 
int-triangle-inequality, 
add_functionality_wrt_le, 
add_functionality_wrt_eq, 
mul_preserves_le, 
sq_stable__le, 
multiply-is-int-iff, 
false_wf, 
req_wf, 
int-rmul_wf, 
int-rmul-one, 
req-iff-bdd-diff, 
accelerate-bdd-diff, 
subtype_rel_sets_simple, 
accelerate_wf, 
bdd-diff_functionality, 
bdd-diff_weakening, 
bdd-diff_inversion, 
nat_properties, 
value-type-has-value, 
int-value-type, 
set-value-type, 
istype-top, 
mul_nat_plus, 
divide_wfa, 
nequal_wf, 
div_rem_sum2, 
remainder_wfa, 
rem_bounds_absval, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval_sym, 
sq_stable__less_than, 
le_weakening2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
int_eqEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaEquality_alt, 
extract_by_obid, 
isectElimination, 
applyEquality, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
int_eqReduceTrueSq, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
multiplyEquality, 
addEquality, 
independent_pairFormation, 
intEquality, 
baseClosed, 
sqequalBase, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
axiomEquality, 
isectIsTypeImplies, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionEquality, 
functionIsType, 
setEquality, 
callbyvalueReduce, 
sqleReflexivity, 
lessCases, 
axiomSqEquality, 
applyLambdaEquality, 
minusEquality
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (alt-int-rdiv(x;k)  \mmember{}  \{y:\mBbbR{}|  k  *  y  =  x\}  )
Date html generated:
2019_10_29-AM-09_33_25
Last ObjectModification:
2019_02_18-PM-03_34_55
Theory : reals
Home
Index