Nuprl Lemma : rounding-div-property

[a:ℤ]. ∀[n:ℕ+].  ((2 |(n [a ÷ n]) a|) ≤ n)


Proof




Definitions occuring in Statement :  rounding-div: [b ÷ m] absval: |i| nat_plus: + uall: [x:A]. B[x] le: A ≤ B multiply: m subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rounding-div: [b ÷ m] has-value: (a)↓ uimplies: supposing a nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q sq_type: SQType(T) guard: {T} nat: uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bool: 𝔹 unit: Unit it: btrue: tt satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q subtract: m
Lemmas referenced :  value-type-has-value nat_plus_wf set-value-type less_than_wf int-value-type divrem-sq nat_plus_inc_int_nzero div_rem_sum divide_wfa rem_bounds_absval remainder_wfa subtype_base_sq int_subtype_base nat_wf set_subtype_base le_wf absval-non-neg absval_pos nat_plus_subtype_nat istype-le absval_strict_ubound istype-less_than absval_wf le_witness_for_triv istype-int decidable__lt istype-top istype-void absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_minus_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf itermAdd_wf int_term_value_add_lemma minus-add minus-one-mul mul-commutes add-swap add-associates add-commutes add-mul-special zero-mul add-zero mul-distributes one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality Error :inhabitedIsType,  because_Cache applyEquality Error :lambdaFormation_alt,  dependent_functionElimination multiplyEquality instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination Error :dependent_set_memberEquality_alt,  productElimination Error :equalityIstype,  baseApply closedConclusion baseClosed sqequalBase setElimination rename Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  unionElimination lessCases axiomSqEquality independent_pairFormation voidElimination imageMemberEquality imageElimination minusEquality equalityElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality promote_hyp addEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((2  *  |(n  *  [a  \mdiv{}  n])  -  a|)  \mleq{}  n)



Date html generated: 2019_06_20-PM-01_13_31
Last ObjectModification: 2019_03_06-AM-11_05_59

Theory : int_2


Home Index