Nuprl Lemma : rounding-div-property
∀[a:ℤ]. ∀[n:ℕ+].  ((2 * |(n * [a ÷ n]) - a|) ≤ n)
Proof
Definitions occuring in Statement : 
rounding-div: [b ÷ m]
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rounding-div: [b ÷ m]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtract: n - m
Lemmas referenced : 
value-type-has-value, 
nat_plus_wf, 
set-value-type, 
less_than_wf, 
int-value-type, 
divrem-sq, 
nat_plus_inc_int_nzero, 
div_rem_sum, 
divide_wfa, 
rem_bounds_absval, 
remainder_wfa, 
subtype_base_sq, 
int_subtype_base, 
nat_wf, 
set_subtype_base, 
le_wf, 
absval-non-neg, 
absval_pos, 
nat_plus_subtype_nat, 
istype-le, 
absval_strict_ubound, 
istype-less_than, 
absval_wf, 
le_witness_for_triv, 
istype-int, 
decidable__lt, 
istype-top, 
istype-void, 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
minus-add, 
minus-one-mul, 
mul-commutes, 
add-swap, 
add-associates, 
add-commutes, 
add-mul-special, 
zero-mul, 
add-zero, 
mul-distributes, 
one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
because_Cache, 
applyEquality, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
multiplyEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
setElimination, 
rename, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
unionElimination, 
lessCases, 
axiomSqEquality, 
independent_pairFormation, 
voidElimination, 
imageMemberEquality, 
imageElimination, 
minusEquality, 
equalityElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
promote_hyp, 
addEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((2  *  |(n  *  [a  \mdiv{}  n])  -  a|)  \mleq{}  n)
Date html generated:
2019_06_20-PM-01_13_31
Last ObjectModification:
2019_03_06-AM-11_05_59
Theory : int_2
Home
Index