Step
*
1
1
1
1
of Lemma
bdd-diff-regular
1. x : ℕ+ ⟶ ℤ
2. y : ℕ+ ⟶ ℤ
3. k : ℕ+
4. l : ℕ+
5. ∀n,m:ℕ+. (|(m * (y n)) - n * (y m)| ≤ ((2 * l) * (n + m)))
6. ∀n,m:ℕ+. (|(m * (x n)) - n * (x m)| ≤ ((2 * k) * (n + m)))
7. B : ℕ
8. ∀n:ℕ+. (|(x n) - y n| ≤ B)
9. n : ℕ+@i
10. m : ℕ+@i
11. (|m| * |(x n) - y n|) ≤ (((2 * k) * (n + m)) + (|n| * |(x m) - y m|) + ((2 * l) * (n + m)))
⊢ (m * |(x n) - y n|) ≤ ((((2 * k) + (2 * l)) * (n + m)) + (n * B))
BY
{ ((Subst ⌜|m| ~ m⌝ (-1)⋅ THENA (RWO "absval_pos" 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto
THEN (Subst ⌜|n| ~ n⌝ 0⋅ THENA (RWO "absval_pos" 0 THEN Auto))) }
1
1. x : ℕ+ ⟶ ℤ
2. y : ℕ+ ⟶ ℤ
3. k : ℕ+
4. l : ℕ+
5. ∀n,m:ℕ+. (|(m * (y n)) - n * (y m)| ≤ ((2 * l) * (n + m)))
6. ∀n,m:ℕ+. (|(m * (x n)) - n * (x m)| ≤ ((2 * k) * (n + m)))
7. B : ℕ
8. ∀n:ℕ+. (|(x n) - y n| ≤ B)
9. n : ℕ+@i
10. m : ℕ+@i
11. (m * |(x n) - y n|) ≤ (((2 * k) * (n + m)) + (|n| * |(x m) - y m|) + ((2 * l) * (n + m)))
⊢ (((2 * k) * (n + m)) + (n * |(x m) - y m|) + ((2 * l) * (n + m))) ≤ ((((2 * k) + (2 * l)) * (n + m)) + (n * B))
Latex:
Latex:
1. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
2. y : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. k : \mBbbN{}\msupplus{}
4. l : \mBbbN{}\msupplus{}
5. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (y n)) - n * (y m)| \mleq{} ((2 * l) * (n + m)))
6. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(m * (x n)) - n * (x m)| \mleq{} ((2 * k) * (n + m)))
7. B : \mBbbN{}
8. \mforall{}n:\mBbbN{}\msupplus{}. (|(x n) - y n| \mleq{} B)
9. n : \mBbbN{}\msupplus{}@i
10. m : \mBbbN{}\msupplus{}@i
11. (|m| * |(x n) - y n|) \mleq{} (((2 * k) * (n + m)) + (|n| * |(x m) - y m|) + ((2 * l) * (n + m)))
\mvdash{} (m * |(x n) - y n|) \mleq{} ((((2 * k) + (2 * l)) * (n + m)) + (n * B))
By
Latex:
((Subst \mkleeneopen{}|m| \msim{} m\mkleeneclose{} (-1)\mcdot{} THENA (RWO "absval\_pos" 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto
THEN (Subst \mkleeneopen{}|n| \msim{} n\mkleeneclose{} 0\mcdot{} THENA (RWO "absval\_pos" 0 THEN Auto)))
Home
Index