Step
*
1
1
1
of Lemma
cantor-lemma
1. x : ℝ
2. y : ℝ
3. e : ℝ
4. z : ℝ
5. [%] : r0 < e
6. [%1] : x < y
7. x < z
8. a : ℝ
9. x < a
10. a < rmin(z;y)
11. (a < ravg(a;rmin(rmin(z;y);a + e))) ∧ (ravg(a;rmin(rmin(z;y);a + e)) < rmin(rmin(z;y);a + e))
⊢ ∃x',y':ℝ. ((x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ ((z < x') ∨ (y' < z)) ∧ ((y' - x') < e))
BY
{ (((MoveToConcl (-1) THEN GenConclTerm ⌜ravg(a;rmin(rmin(z;y);a + e))⌝⋅)⋅ THENA Auto)
THEN Thin (-1)
THEN RenameVar `b' (-1)
THEN Auto) }
1
1. x : ℝ
2. y : ℝ
3. e : ℝ
4. z : ℝ
5. [%] : r0 < e
6. [%1] : x < y
7. x < z
8. a : ℝ
9. x < a
10. a < rmin(z;y)
11. b : ℝ
12. a < b
13. b < rmin(rmin(z;y);a + e)
⊢ ∃x',y':ℝ. ((x ≤ x') ∧ (x' < y') ∧ (y' ≤ y) ∧ ((z < x') ∨ (y' < z)) ∧ ((y' - x') < e))
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. e : \mBbbR{}
4. z : \mBbbR{}
5. [\%] : r0 < e
6. [\%1] : x < y
7. x < z
8. a : \mBbbR{}
9. x < a
10. a < rmin(z;y)
11. (a < ravg(a;rmin(rmin(z;y);a + e))) \mwedge{} (ravg(a;rmin(rmin(z;y);a + e)) < rmin(rmin(z;y);a + e))
\mvdash{} \mexists{}x',y':\mBbbR{}. ((x \mleq{} x') \mwedge{} (x' < y') \mwedge{} (y' \mleq{} y) \mwedge{} ((z < x') \mvee{} (y' < z)) \mwedge{} ((y' - x') < e))
By
Latex:
(((MoveToConcl (-1) THEN GenConclTerm \mkleeneopen{}ravg(a;rmin(rmin(z;y);a + e))\mkleeneclose{}\mcdot{})\mcdot{} THENA Auto)
THEN Thin (-1)
THEN RenameVar `b' (-1)
THEN Auto)
Home
Index