Step
*
1
1
1
of Lemma
case-real_wf
1. P : ℙ
2. a : ℕ+ ⟶ ℤ
3. regular-seq(a)
4. b : ℕ+ ⟶ ℤ
5. regular-seq(b)
6. f : {n:ℕ+| 4 < |(a n) - b n|} ⟶ ((↓P) ∨ (↓¬P))
7. λn.if 4 <z |(a n) - b n| ∧b (f n) then a n else b n fi ∈ ℕ+ ⟶ ℤ
8. n : ℕ+
9. m : ℕ+
10. ¬4 < |(a m) - b m|
11. 4 < |(a n) - b n|
12. x : ↓P
13. (f n) = (inl x) ∈ ((↓P) ∨ (↓¬P))
⊢ (|(m * (a n)) - n * (a m)| + |(n * (a m)) - n * (b m)|) ≤ (6 * (n + m))
BY
{ ((Assert |(n * (a m)) - n * (b m)| ≤ (4 * n) BY
((Assert |(a m) - b m| ≤ 4 BY
Auto)
THEN Mul ⌜|n|⌝ (-1)⋅
THEN (RWO "absval_mul<" (-1) THENA Auto)
THEN NthHypSq (-1)
THEN Auto))
THEN UnfoldTopAb 3
THEN RWO "3 -1" 0
THEN Auto) }
Latex:
Latex:
1. P : \mBbbP{}
2. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. regular-seq(a)
4. b : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
5. regular-seq(b)
6. f : \{n:\mBbbN{}\msupplus{}| 4 < |(a n) - b n|\} {}\mrightarrow{} ((\mdownarrow{}P) \mvee{} (\mdownarrow{}\mneg{}P))
7. \mlambda{}n.if 4 <z |(a n) - b n| \mwedge{}\msubb{} (f n) then a n else b n fi \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
8. n : \mBbbN{}\msupplus{}
9. m : \mBbbN{}\msupplus{}
10. \mneg{}4 < |(a m) - b m|
11. 4 < |(a n) - b n|
12. x : \mdownarrow{}P
13. (f n) = (inl x)
\mvdash{} (|(m * (a n)) - n * (a m)| + |(n * (a m)) - n * (b m)|) \mleq{} (6 * (n + m))
By
Latex:
((Assert |(n * (a m)) - n * (b m)| \mleq{} (4 * n) BY
((Assert |(a m) - b m| \mleq{} 4 BY
Auto)
THEN Mul \mkleeneopen{}|n|\mkleeneclose{} (-1)\mcdot{}
THEN (RWO "absval\_mul<" (-1) THENA Auto)
THEN NthHypSq (-1)
THEN Auto))
THEN UnfoldTopAb 3
THEN RWO "3 -1" 0
THEN Auto)
Home
Index