Nuprl Lemma : case-real_wf

[P:ℙ]. ∀[a,b:ℝ]. ∀[f:{n:ℕ+4 < |(a n) n|}  ⟶ ((↓P) ∨ (↓¬P))].
  (case-real(a;b;f) ∈ {z:ℝ(P  (z a)) ∧ ((¬P)  (z b))} )


Proof




Definitions occuring in Statement :  case-real: case-real(a;b;f) req: y real: absval: |i| nat_plus: + less_than: a < b uall: [x:A]. B[x] prop: not: ¬A squash: T implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: case-real: case-real(a;b;f) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: band: p ∧b q ifthenelse: if then else fi  or: P ∨ Q bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q prop: regular-int-seq: k-regular-seq(f) squash: T nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) ge: i ≥  true: True so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B stable: Stable{P} rneq: x ≠ y int_upper: {i...} le: A ≤ B less_than': less_than'(a;b) gt: i > j less_than: a < b req: y bdd-diff: bdd-diff(f;g) absval: |i| subtract: m
Lemmas referenced :  lt_int_wf absval_wf subtract_wf eqtt_to_assert assert_of_lt_int istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf nat_plus_wf squash_wf not_wf real_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermMultiply_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_functionality le_weakening int-triangle-inequality int_subtype_base decidable__equal_int decidable__lt intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma mul_preserves_le le_wf true_wf absval_mul subtype_rel_self iff_weakening_equal nat_wf set_subtype_base absval-non-neg equal_wf istype-universe left_mul_subtract_distrib istype-le mul-commutes absval_pos nat_plus_subtype_nat add_functionality_wrt_le absval-diff-symmetry add-commutes accelerate_wf regular-int-seq_wf real-regular req_wf stable_req false_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle req-iff-bdd-diff eventually-equal-implies-bdd-diff bdd-diff_functionality accelerate-bdd-diff bdd-diff_weakening rneq-iff rless-iff4 absval_lbound int_upper_properties gt_wf istype-int_upper subtype_rel_sets_simple less_than_transitivity1 req_functionality req_weakening istype-false minus-one-mul add-mul-special zero-mul le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename lambdaEquality_alt extract_by_obid isectElimination natural_numberEquality applyEquality hypothesisEquality hypothesis because_Cache sqequalRule inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_set_memberEquality_alt equalityIstype dependent_functionElimination independent_functionElimination dependent_pairFormation_alt promote_hyp instantiate cumulativity voidElimination universeIsType axiomEquality functionIsType setIsType unionIsType isect_memberEquality_alt isectIsTypeImplies universeEquality imageElimination multiplyEquality addEquality approximateComputation int_eqEquality independent_pairFormation intEquality imageMemberEquality baseClosed productIsType unionEquality productEquality functionEquality inlFormation_alt minusEquality pointwiseFunctionality inrFormation_alt sqequalBase

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[f:\{n:\mBbbN{}\msupplus{}|  4  <  |(a  n)  -  b  n|\}    {}\mrightarrow{}  ((\mdownarrow{}P)  \mvee{}  (\mdownarrow{}\mneg{}P))].
    (case-real(a;b;f)  \mmember{}  \{z:\mBbbR{}|  (P  {}\mRightarrow{}  (z  =  a))  \mwedge{}  ((\mneg{}P)  {}\mRightarrow{}  (z  =  b))\}  )



Date html generated: 2019_10_29-AM-09_36_43
Last ObjectModification: 2019_05_23-PM-05_35_58

Theory : reals


Home Index