Nuprl Lemma : comparison-test-ext
∀y:ℕ ⟶ ℝ. (Σn.y[n]↓
⇒ (∀x:ℕ ⟶ ℝ. Σn.x[n]↓ supposing ∀n:ℕ. (|x[n]| ≤ y[n])))
Proof
Definitions occuring in Statement :
series-converges: Σn.x[n]↓
,
rleq: x ≤ y
,
rabs: |x|
,
real: ℝ
,
nat: ℕ
,
uimplies: b supposing a
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
member: t ∈ T
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
accelerate: accelerate(k;f)
,
comparison-test,
converges-iff-cauchy-ext,
uall: ∀[x:A]. B[x]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
top: Top
,
uimplies: b supposing a
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
strict4: strict4(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
or: P ∨ Q
,
squash: ↓T
Lemmas referenced :
comparison-test,
lifting-strict-spread,
istype-void,
strict4-apply,
value-type-has-value,
int-value-type,
has-value_wf_base,
istype-base,
is-exception_wf,
istype-universe,
converges-iff-cauchy-ext
Rules used in proof :
introduction,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
instantiate,
extract_by_obid,
hypothesis,
sqequalRule,
thin,
sqequalHypSubstitution,
equalityTransitivity,
equalitySymmetry,
isectElimination,
baseClosed,
isect_memberEquality_alt,
voidElimination,
independent_isectElimination,
independent_pairFormation,
lambdaFormation_alt,
callbyvalueAdd,
baseApply,
closedConclusion,
hypothesisEquality,
productElimination,
intEquality,
universeIsType,
addExceptionCases,
exceptionSqequal,
inrFormation_alt,
imageMemberEquality,
imageElimination,
inlFormation_alt
Latex:
\mforall{}y:\mBbbN{} {}\mrightarrow{} \mBbbR{}. (\mSigma{}n.y[n]\mdownarrow{} {}\mRightarrow{} (\mforall{}x:\mBbbN{} {}\mrightarrow{} \mBbbR{}. \mSigma{}n.x[n]\mdownarrow{} supposing \mforall{}n:\mBbbN{}. (|x[n]| \mleq{} y[n])))
Date html generated:
2019_10_29-AM-10_25_45
Last ObjectModification:
2019_04_02-AM-00_16_31
Theory : reals
Home
Index