Nuprl Lemma : concave-on_wf

[I:Interval]. ∀[f:I ⟶ℝ].  (concave-on(I;x.f[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  concave-on: concave-on(I;x.f[x]) rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concave-on: concave-on(I;x.f[x]) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q so_apply: x[s] rfun: I ⟶ℝ
Lemmas referenced :  member_rccint_lemma all_wf real_wf i-member_wf rleq_wf int-to-real_wf radd_wf rmul_wf rsub_wf i-member-convex rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination lambdaEquality because_Cache functionEquality hypothesisEquality productEquality natural_numberEquality applyEquality dependent_set_memberEquality productElimination independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (concave-on(I;x.f[x])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-02_20_05
Last ObjectModification: 2017_10_20-PM-01_33_08

Theory : reals


Home Index