Nuprl Lemma : concave-on_wf
∀[I:Interval]. ∀[f:I ⟶ℝ].  (concave-on(I;x.f[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
concave-on: concave-on(I;x.f[x])
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
concave-on: concave-on(I;x.f[x])
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
Lemmas referenced : 
member_rccint_lemma, 
all_wf, 
real_wf, 
i-member_wf, 
rleq_wf, 
int-to-real_wf, 
radd_wf, 
rmul_wf, 
rsub_wf, 
i-member-convex, 
rfun_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
productEquality, 
natural_numberEquality, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (concave-on(I;x.f[x])  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-02_20_05
Last ObjectModification:
2017_10_20-PM-01_33_08
Theory : reals
Home
Index