Nuprl Lemma : i-member-convex

I:Interval. ∀a,b:ℝ.  ((a ∈ I)  (b ∈ I)  (∀t:ℝ((r0 ≤ t)  (t ≤ r1)  ((t a) ((r1 t) b) ∈ I))))


Proof




Definitions occuring in Statement :  i-member: r ∈ I interval: Interval rleq: x ≤ y rsub: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  i-member-between rmin_wf rmax_wf rmin-i-member rmax-i-member radd_wf rmul_wf rsub_wf int-to-real_wf rmin-lb-convex rmax-ub-convex rleq_wf real_wf i-member_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis independent_functionElimination natural_numberEquality

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.
    ((a  \mmember{}  I)  {}\mRightarrow{}  (b  \mmember{}  I)  {}\mRightarrow{}  (\mforall{}t:\mBbbR{}.  ((r0  \mleq{}  t)  {}\mRightarrow{}  (t  \mleq{}  r1)  {}\mRightarrow{}  ((t  *  a)  +  ((r1  -  t)  *  b)  \mmember{}  I))))



Date html generated: 2018_05_22-PM-02_05_36
Last ObjectModification: 2017_10_20-PM-04_50_38

Theory : reals


Home Index