Nuprl Lemma : rmax-ub-convex
∀a,b,t:ℝ.  ((r0 ≤ t) 
⇒ (t ≤ r1) 
⇒ (((t * a) + ((r1 - t) * b)) ≤ rmax(a;b)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmax: rmax(x;y)
, 
rsub: x - y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
rleq-rmax, 
rmul_preserves_rleq2, 
rmax_wf, 
rleq-implies-rleq, 
rmul_wf, 
rsub_wf, 
int-to-real_wf, 
rleq_functionality, 
radd_wf, 
rminus_wf, 
rleq_wf, 
real_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
itermConstant_wf, 
itermAdd_wf, 
itermMinus_wf, 
rleq_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
rleq_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a,b,t:\mBbbR{}.    ((r0  \mleq{}  t)  {}\mRightarrow{}  (t  \mleq{}  r1)  {}\mRightarrow{}  (((t  *  a)  +  ((r1  -  t)  *  b))  \mleq{}  rmax(a;b)))
Date html generated:
2018_05_22-PM-01_32_32
Last ObjectModification:
2017_10_20-PM-04_50_09
Theory : reals
Home
Index