Nuprl Lemma : rmax-ub-convex

a,b,t:ℝ.  ((r0 ≤ t)  (t ≤ r1)  (((t a) ((r1 t) b)) ≤ rmax(a;b)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmax: rmax(x;y) rsub: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q uimplies: supposing a uiff: uiff(P;Q) prop: req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rleq-rmax rmul_preserves_rleq2 rmax_wf rleq-implies-rleq rmul_wf rsub_wf int-to-real_wf rleq_functionality radd_wf rminus_wf rleq_wf real_wf itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 itermConstant_wf itermAdd_wf itermMinus_wf rleq_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_minus_lemma rleq_functionality_wrt_implies radd_functionality_wrt_rleq rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis independent_isectElimination natural_numberEquality because_Cache sqequalRule dependent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}a,b,t:\mBbbR{}.    ((r0  \mleq{}  t)  {}\mRightarrow{}  (t  \mleq{}  r1)  {}\mRightarrow{}  (((t  *  a)  +  ((r1  -  t)  *  b))  \mleq{}  rmax(a;b)))



Date html generated: 2018_05_22-PM-01_32_32
Last ObjectModification: 2017_10_20-PM-04_50_09

Theory : reals


Home Index