Step
*
1
1
2
1
of Lemma
continuous-maps-compact
1. I : Interval
2. f : I ⟶ℝ
3. iproper(I)
4. f[x] (proper)continuous for x ∈ I
5. n : {n:ℕ+| icompact(i-approx(I;n))}
6. ∃m:{m:ℕ+| icompact(i-approx((-∞, ∞);m)) ∧ iproper(i-approx((-∞, ∞);m))}
∀x:{x:ℝ| x ∈ i-approx(I;n + 1)} . (f[x] ∈ i-approx((-∞, ∞);m))
7. ∀x:ℝ. ∀n:ℕ+. ((x ∈ i-approx(I;n))
⇒ (x ∈ I))
⊢ ∃m:{m:ℕ+| icompact(i-approx((-∞, ∞);m))} . ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx((-∞, ∞);m))
BY
{ (ParallelOp -2 THEN Auto) }
1
1. I : Interval
2. f : I ⟶ℝ
3. iproper(I)
4. f[x] (proper)continuous for x ∈ I
5. n : {n:ℕ+| icompact(i-approx(I;n))}
6. m : {m:ℕ+| icompact(i-approx((-∞, ∞);m)) ∧ iproper(i-approx((-∞, ∞);m))}
7. ∀x:{x:ℝ| x ∈ i-approx(I;n + 1)} . (f[x] ∈ i-approx((-∞, ∞);m))
8. ∀x:ℝ. ∀n:ℕ+. ((x ∈ i-approx(I;n))
⇒ (x ∈ I))
9. x : {x:ℝ| x ∈ i-approx(I;n)}
⊢ f[x] ∈ i-approx((-∞, ∞);m)
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. iproper(I)
4. f[x] (proper)continuous for x \mmember{} I
5. n : \{n:\mBbbN{}\msupplus{}| icompact(i-approx(I;n))\}
6. \mexists{}m:\{m:\mBbbN{}\msupplus{}| icompact(i-approx((-\minfty{}, \minfty{});m)) \mwedge{} iproper(i-approx((-\minfty{}, \minfty{});m))\}
\mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;n + 1)\} . (f[x] \mmember{} i-approx((-\minfty{}, \minfty{});m))
7. \mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. ((x \mmember{} i-approx(I;n)) {}\mRightarrow{} (x \mmember{} I))
\mvdash{} \mexists{}m:\{m:\mBbbN{}\msupplus{}| icompact(i-approx((-\minfty{}, \minfty{});m))\}
\mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;n)\} . (f[x] \mmember{} i-approx((-\minfty{}, \minfty{});m))
By
Latex:
(ParallelOp -2 THEN Auto)
Home
Index