Nuprl Lemma : continuous-maps-compact

I:Interval. ∀f:I ⟶ℝ.  (iproper(I)  f[x] (proper)continuous for x ∈  maps-compact(I;(-∞, ∞);x.f[x]))


Proof




Definitions occuring in Statement :  maps-compact: maps-compact(I;J;x.f[x]) proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ riiint: (-∞, ∞) iproper: iproper(I) interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uall: [x:A]. B[x] prop: label: ...$L... t maps-compact: maps-compact(I;J;x.f[x]) maps-compact-proper: maps-compact-proper(I;J;x.f[x]) and: P ∧ Q nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True exists: x:A. B[x] guard: {T} cand: c∧ B sq_stable: SqStable(P) squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) i-member: r ∈ I i-approx: i-approx(I;n) riiint: (-∞, ∞) rccint: [l, u]
Lemmas referenced :  proper-continuous-maps-compact i-member_wf real_wf proper-continuous_wf iproper_wf rfun_wf interval_wf set_wf nat_plus_wf icompact_wf i-approx_wf iproper-approx decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf i-member-approx riiint_wf all_wf i-approx-monotonic sq_stable__and sq_stable__icompact sq_stable__iproper nat_plus_properties decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality hypothesis isectElimination setEquality independent_functionElimination productElimination addEquality natural_numberEquality unionElimination independent_pairFormation voidElimination independent_isectElimination isect_memberEquality voidEquality intEquality because_Cache minusEquality productEquality dependent_pairFormation imageMemberEquality baseClosed imageElimination int_eqEquality computeAll

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (iproper(I)  {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I  {}\mRightarrow{}  maps-compact(I;(-\minfty{},  \minfty{});x.f[x]))



Date html generated: 2016_10_26-AM-09_59_16
Last ObjectModification: 2016_08_24-PM-02_14_54

Theory : reals


Home Index