Nuprl Lemma : i-approx-monotonic

I:Interval. ∀n,m:ℕ+.  ∀x:ℝ((x ∈ i-approx(I;n))  (x ∈ i-approx(I;m))) supposing n ≤ m


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + uimplies: supposing a le: A ≤ B all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] nat_plus: + prop: iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top uiff: uiff(P;Q) interval: Interval i-approx: i-approx(I;n) cand: c∧ B guard: {T} rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  radd_functionality_wrt_rleq rsub_functionality_wrt_rleq rleq_weakening_equal rleq_functionality_wrt_implies radd_wf rless_wf int_formula_prop_less_lemma intformless_wf decidable__lt rless-int rdiv_wf rsub_wf int-to-real_wf rleq_transitivity member_rccint_lemma interval_wf nat_plus_wf le_wf real_wf i-approx_wf i-member_wf int_term_value_constant_lemma int_term_value_mul_lemma itermConstant_wf itermMultiply_wf rleq-int-fractions int_formula_prop_wf int_term_value_var_lemma int_term_value_minus_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermMinus_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties rleq-int less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination lemma_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination minusEquality unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll because_Cache multiplyEquality inrFormation

Latex:
\mforall{}I:Interval.  \mforall{}n,m:\mBbbN{}\msupplus{}.    \mforall{}x:\mBbbR{}.  ((x  \mmember{}  i-approx(I;n))  {}\mRightarrow{}  (x  \mmember{}  i-approx(I;m)))  supposing  n  \mleq{}  m



Date html generated: 2016_05_18-AM-08_39_34
Last ObjectModification: 2016_01_17-AM-02_27_54

Theory : reals


Home Index