Nuprl Lemma : proper-continuous_wf
∀[I:Interval]. ∀[f:I ⟶ℝ]. (f[x] (proper)continuous for x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement :
proper-continuous: f[x] (proper)continuous for x ∈ I
,
rfun: I ⟶ℝ
,
interval: Interval
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
Definitions unfolded in proof :
proper-continuous: f[x] (proper)continuous for x ∈ I
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
rfun: I ⟶ℝ
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
rless: x < y
,
sq_exists: ∃x:{A| B[x]}
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
Lemmas referenced :
all_wf,
nat_plus_wf,
icompact_wf,
i-approx_wf,
iproper_wf,
sq_exists_wf,
real_wf,
rless_wf,
int-to-real_wf,
i-member_wf,
rleq_wf,
rabs_wf,
rsub_wf,
i-member-approx,
rdiv_wf,
rless-int,
nat_plus_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rfun_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
hypothesis,
productEquality,
hypothesisEquality,
because_Cache,
lambdaEquality,
lambdaFormation,
setElimination,
rename,
natural_numberEquality,
functionEquality,
applyEquality,
productElimination,
dependent_functionElimination,
independent_functionElimination,
dependent_set_memberEquality,
independent_isectElimination,
inrFormation,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[I:Interval]. \mforall{}[f:I {}\mrightarrow{}\mBbbR{}]. (f[x] (proper)continuous for x \mmember{} I \mmember{} \mBbbP{})
Date html generated:
2016_10_26-AM-09_43_19
Last ObjectModification:
2016_08_23-PM-05_10_30
Theory : reals
Home
Index