Step
*
1
1
1
of Lemma
converges-implies-bounded
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - y| ≤ (r1/r(k)))))})
4. N : ℕ
5. ∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - y| ≤ (r1/r1)))
6. n : ℕ
⊢ |x[n + N]| ≤ (|y| + (r1/r1))
BY
{ (InstHyp [⌜n + N⌝] (-2)⋅
THEN Auto'
THEN MoveToConcl (-1)
THEN GenConclAtAddr [2;1;1]
THEN All Thin
THEN Auto
THEN ((InstLemma `r-triangle-inequality` [⌜y⌝; ⌜v - y⌝])⋅ THENA Auto)
THEN RWO "3" (-1)
THEN Auto
THEN (nRNorm (-1) THEN Auto)
THEN nRNorm 0
THEN Auto) }
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. y : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\{\mBbbN{}| (\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - y| \mleq{} (r1/r(k)))))\})
4. N : \mBbbN{}
5. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - y| \mleq{} (r1/r1)))
6. n : \mBbbN{}
\mvdash{} |x[n + N]| \mleq{} (|y| + (r1/r1))
By
Latex:
(InstHyp [\mkleeneopen{}n + N\mkleeneclose{}] (-2)\mcdot{}
THEN Auto'
THEN MoveToConcl (-1)
THEN GenConclAtAddr [2;1;1]
THEN All Thin
THEN Auto
THEN ((InstLemma `r-triangle-inequality` [\mkleeneopen{}y\mkleeneclose{}; \mkleeneopen{}v - y\mkleeneclose{}])\mcdot{} THENA Auto)
THEN RWO "3" (-1)
THEN Auto
THEN (nRNorm (-1) THEN Auto)
THEN nRNorm 0
THEN Auto)
Home
Index