Nuprl Lemma : converges-implies-bounded

x:ℕ ⟶ ℝ(x[n]↓ as n→∞  bounded-sequence(n.x[n]))


Proof




Definitions occuring in Statement :  bounded-sequence: bounded-sequence(n.x[n]) converges: x[n]↓ as n→∞ real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges: x[n]↓ as n→∞ exists: x:A. B[x] converges-to: lim n→∞.x[n] y member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q uall: [x:A]. B[x] prop: sq_exists: x:{A| B[x]} so_lambda: λ2x.t[x] so_apply: x[s] bounded-sequence: bounded-sequence(n.x[n]) uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False nat: ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B rge: x ≥ y rsub: y uiff: uiff(P;Q) sq_type: SQType(T)
Lemmas referenced :  less_than_wf converges_wf nat_wf real_wf radd_wf rabs_wf rdiv_wf int-to-real_wf rless-int rless_wf less_than'_wf rsub_wf nat_plus_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf nat_plus_wf all_wf rleq_wf r-triangle-inequality equal_wf rminus_wf squash_wf true_wf radd_comm_eq iff_weakening_equal rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq uiff_transitivity rleq_functionality rabs_functionality radd-ac radd_comm radd_functionality radd-rminus-both req_weakening radd-zero-both bounded-sequence_wf intformless_wf int_formula_prop_less_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_wf primrec-wf2 add-zero rmax_wf decidable__equal_int subtype_base_sq int_subtype_base zero-add rleq-rmax intformeq_wf int_formula_prop_eq_lemma rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis dependent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality hypothesisEquality baseClosed extract_by_obid isectElimination setElimination rename lambdaEquality applyEquality functionExtensionality functionEquality dependent_pairFormation because_Cache independent_isectElimination inrFormation independent_functionElimination independent_pairEquality voidElimination addEquality unionElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll minusEquality axiomEquality equalityTransitivity equalitySymmetry imageElimination universeEquality instantiate cumulativity

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (x[n]\mdownarrow{}  as  n\mrightarrow{}\minfty{}  {}\mRightarrow{}  bounded-sequence(n.x[n]))



Date html generated: 2017_10_03-AM-08_52_41
Last ObjectModification: 2017_07_28-AM-07_35_18

Theory : reals


Home Index