Step
*
1
1
2
of Lemma
extensional-real-to-bool-constant
1. f : ℝ ⟶ 𝔹
2. ∀x,y:ℝ. ((x = y)
⇒ f x = f y)
3. a : ℝ
4. b : ℝ
5. ¬f a = f b
6. a < b
7. ∀x,y:{x:ℝ| x ∈ [a, b]} . (if f x then 0 else 1 fi = if f y then 0 else 1 fi ∈ ℤ)
⊢ False
BY
{ (InstHyp [⌜a⌝;⌜b⌝] (-1)⋅ THENA Auto) }
1
1. f : ℝ ⟶ 𝔹
2. ∀x,y:ℝ. ((x = y)
⇒ f x = f y)
3. a : ℝ
4. b : ℝ
5. ¬f a = f b
6. a < b
7. ∀x,y:{x:ℝ| x ∈ [a, b]} . (if f x then 0 else 1 fi = if f y then 0 else 1 fi ∈ ℤ)
8. if f a then 0 else 1 fi = if f b then 0 else 1 fi ∈ ℤ
⊢ False
Latex:
Latex:
1. f : \mBbbR{} {}\mrightarrow{} \mBbbB{}
2. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} f x = f y)
3. a : \mBbbR{}
4. b : \mBbbR{}
5. \mneg{}f a = f b
6. a < b
7. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (if f x then 0 else 1 fi = if f y then 0 else 1 fi )
\mvdash{} False
By
Latex:
(InstHyp [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
Home
Index