Nuprl Lemma : frs-increasing-separated-common-refinement

p,q:ℝ List.
  (frs-increasing(p)
   frs-increasing(q)
   frs-separated(p;q)
   (∃r:ℝ List. (frs-increasing(r) ∧ frs-refines(r;p) ∧ frs-refines(r;q) ∧ frs-refines(p q;r))))


Proof




Definitions occuring in Statement :  frs-separated: frs-separated(p;q) frs-increasing: frs-increasing(p) frs-refines: frs-refines(p;q) real: append: as bs list: List all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] trans: Trans(T;x,y.E[x; y]) guard: {T} uimplies: supposing a prop: iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q frs-separated: frs-separated(p;q) so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y exists: x:A. B[x] cand: c∧ B frs-refines: frs-refines(p;q) l_all: (∀x∈L.P[x]) l_contains: A ⊆ B l_member: (x ∈ l) l_exists: (∃x∈L. P[x]) nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T uiff: uiff(P;Q)
Lemmas referenced :  merge-strict-exists real_wf rless_wf rless_transitivity2 rleq_weakening_rless l_member_wf frs-increasing-sorted-by frs-separated_wf frs-increasing_wf list_wf l_all_iff l_all_wf2 rneq_wf all_wf lelt_wf length_wf req_weakening req_wf select_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf length-append append_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf frs-refines_wf le_wf and_wf equal_wf nat_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality independent_functionElimination dependent_functionElimination independent_isectElimination because_Cache productElimination independent_pairFormation addLevel setElimination rename setEquality allFunctionality levelHypothesis promote_hyp functionEquality dependent_pairFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination addEquality pointwiseFunctionality baseApply closedConclusion baseClosed productEquality hyp_replacement applyEquality

Latex:
\mforall{}p,q:\mBbbR{}  List.
    (frs-increasing(p)
    {}\mRightarrow{}  frs-increasing(q)
    {}\mRightarrow{}  frs-separated(p;q)
    {}\mRightarrow{}  (\mexists{}r:\mBbbR{}  List.  (frs-increasing(r)  \mwedge{}  frs-refines(r;p)  \mwedge{}  frs-refines(r;q)  \mwedge{}  frs-refines(p  @  q;r))))



Date html generated: 2016_10_26-AM-09_33_11
Last ObjectModification: 2016_07_12-AM-08_20_23

Theory : reals


Home Index