Nuprl Lemma : frs-refines_transitivity

[p,q,r:ℝ List].  (frs-refines(p;q)  frs-refines(q;r)  frs-refines(p;r))


Proof




Definitions occuring in Statement :  frs-refines: frs-refines(p;q) real: list: List uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q frs-refines: frs-refines(p;q) l_all: (∀x∈L.P[x]) all: x:A. B[x] member: t ∈ T l_exists: (∃x∈L. P[x]) exists: x:A. B[x] guard: {T} int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: less_than: a < b squash: T
Lemmas referenced :  list_wf frs-refines_wf int_seg_wf req_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties real_wf select_wf req_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination rename dependent_pairFormation cut hypothesis lemma_by_obid isectElimination setElimination independent_isectElimination natural_numberEquality unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache imageElimination

Latex:
\mforall{}[p,q,r:\mBbbR{}  List].    (frs-refines(p;q)  {}\mRightarrow{}  frs-refines(q;r)  {}\mRightarrow{}  frs-refines(p;r))



Date html generated: 2016_05_18-AM-08_52_39
Last ObjectModification: 2016_01_17-AM-02_26_54

Theory : reals


Home Index