Step
*
1
2
1
1
1
of Lemma
fun-comparison-test
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : ℕ ⟶ I ⟶ℝ
4. ∀n:ℕ. ∀x:{x:ℝ| x ∈ I} . (|f[n;x]| ≤ g[n;x])
5. a : {a:ℕ+| icompact(i-approx(I;a))}
6. ∀k:ℕ+. ∃N:ℕ+. ∀x:{x:ℝ| x ∈ i-approx(I;a)} . ∀n,m:{N...}. (|Σ{g[i;x] | 0≤i≤n} - Σ{g[i;x] | 0≤i≤m}| ≤ (r1/r(k)))
7. ∀k:ℕ+. ∀large(n).∀m:ℕ. ∀x:{x:ℝ| x ∈ i-approx(I;a)} . (Σ{g[i;x] | n + 1≤i≤m} ≤ (r1/r(k)))
8. k : ℕ+
9. N : ℕ
10. ∀n:ℕ. ((N ≤ n)
⇒ (∀m:ℕ. ∀x:{x:ℝ| x ∈ i-approx(I;a)} . (Σ{g[i;x] | n + 1≤i≤m} ≤ (r1/r(k)))))
11. x : ℝ
12. x ∈ i-approx(I;a)
13. n : {N + 1...}
14. m : {N + 1...}
15. x ∈ I
16. n ≤ m
⊢ |Σ{f[i;x] | n + 1≤i≤m}| ≤ (r1/r(k))
BY
{ ((Assert Σ{g[i;x] | n + 1≤i≤m} ≤ (r1/r(k)) BY Auto)⋅ THEN RWO "-1<" 0 THEN Auto THEN RWW "rabs-rsum 4" 0 THEN Auto) }
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. g : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
4. \mforall{}n:\mBbbN{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . (|f[n;x]| \mleq{} g[n;x])
5. a : \{a:\mBbbN{}\msupplus{}| icompact(i-approx(I;a))\}
6. \mforall{}k:\mBbbN{}\msupplus{}
\mexists{}N:\mBbbN{}\msupplus{}
\mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;a)\} . \mforall{}n,m:\{N...\}.
(|\mSigma{}\{g[i;x] | 0\mleq{}i\mleq{}n\} - \mSigma{}\{g[i;x] | 0\mleq{}i\mleq{}m\}| \mleq{} (r1/r(k)))
7. \mforall{}k:\mBbbN{}\msupplus{}. \mforall{}large(n).\mforall{}m:\mBbbN{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;a)\} . (\mSigma{}\{g[i;x] | n + 1\mleq{}i\mleq{}m\} \mleq{} (r1/r(k)))
8. k : \mBbbN{}\msupplus{}
9. N : \mBbbN{}
10. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (\mforall{}m:\mBbbN{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;a)\} . (\mSigma{}\{g[i;x] | n + 1\mleq{}i\mleq{}m\} \mleq{} (r1/r(k)))))
11. x : \mBbbR{}
12. x \mmember{} i-approx(I;a)
13. n : \{N + 1...\}
14. m : \{N + 1...\}
15. x \mmember{} I
16. n \mleq{} m
\mvdash{} |\mSigma{}\{f[i;x] | n + 1\mleq{}i\mleq{}m\}| \mleq{} (r1/r(k))
By
Latex:
((Assert \mSigma{}\{g[i;x] | n + 1\mleq{}i\mleq{}m\} \mleq{} (r1/r(k)) BY
Auto)\mcdot{}
THEN RWO "-1<" 0
THEN Auto
THEN RWW "rabs-rsum 4" 0
THEN Auto)
Home
Index