Nuprl Lemma : i-closed-finite-rep

I:Interval. (i-closed(I)  i-finite(I)  (∃a,b:ℝ(I [a, b] ∈ Interval)))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-closed: i-closed(I) i-finite: i-finite(I) interval: Interval real: all: x:A. B[x] exists: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q interval: Interval i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt i-closed: i-closed(I) outl: outl(x) bnot: ¬bb bor: p ∨bq bfalse: ff and: P ∧ Q exists: x:A. B[x] member: t ∈ T rccint: [l, u] uall: [x:A]. B[x] prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top false: False
Lemmas referenced :  rccint_wf equal_wf interval_wf subtype_rel_product real_wf top_wf subtype_rel_union exists_wf i-finite_wf i-closed_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule dependent_pairFormation hypothesisEquality because_Cache cut hypothesis lemma_by_obid isectElimination independent_pairEquality inlEquality voidEquality applyEquality unionEquality lambdaEquality independent_isectElimination voidElimination isect_memberEquality

Latex:
\mforall{}I:Interval.  (i-closed(I)  {}\mRightarrow{}  i-finite(I)  {}\mRightarrow{}  (\mexists{}a,b:\mBbbR{}.  (I  =  [a,  b])))



Date html generated: 2016_05_18-AM-08_48_23
Last ObjectModification: 2015_12_27-PM-11_45_48

Theory : reals


Home Index