Nuprl Lemma : i-closed-finite-rep
∀I:Interval. (i-closed(I) 
⇒ i-finite(I) 
⇒ (∃a,b:ℝ. (I = [a, b] ∈ Interval)))
Proof
Definitions occuring in Statement : 
rccint: [l, u]
, 
i-closed: i-closed(I)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
interval: Interval
, 
i-finite: i-finite(I)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
i-closed: i-closed(I)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
bor: p ∨bq
, 
bfalse: ff
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
rccint: [l, u]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
false: False
Lemmas referenced : 
rccint_wf, 
equal_wf, 
interval_wf, 
subtype_rel_product, 
real_wf, 
top_wf, 
subtype_rel_union, 
exists_wf, 
i-finite_wf, 
i-closed_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
dependent_pairFormation, 
hypothesisEquality, 
because_Cache, 
cut, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
independent_pairEquality, 
inlEquality, 
voidEquality, 
applyEquality, 
unionEquality, 
lambdaEquality, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality
Latex:
\mforall{}I:Interval.  (i-closed(I)  {}\mRightarrow{}  i-finite(I)  {}\mRightarrow{}  (\mexists{}a,b:\mBbbR{}.  (I  =  [a,  b])))
Date html generated:
2016_05_18-AM-08_48_23
Last ObjectModification:
2015_12_27-PM-11_45_48
Theory : reals
Home
Index