Nuprl Lemma : i-length_wf
∀[I:Interval]. |I| ∈ ℝ supposing i-finite(I)
Proof
Definitions occuring in Statement : 
i-length: |I|
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
i-length: |I|
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
rsub_wf, 
right-endpoint_wf, 
left-endpoint_wf, 
i-finite_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:Interval].  |I|  \mmember{}  \mBbbR{}  supposing  i-finite(I)
Date html generated:
2016_05_18-AM-08_18_30
Last ObjectModification:
2015_12_27-PM-11_56_52
Theory : reals
Home
Index