Nuprl Lemma : i-length_wf

[I:Interval]. |I| ∈ ℝ supposing i-finite(I)


Proof




Definitions occuring in Statement :  i-length: |I| i-finite: i-finite(I) interval: Interval real: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  i-length: |I| uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  rsub_wf right-endpoint_wf left-endpoint_wf i-finite_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[I:Interval].  |I|  \mmember{}  \mBbbR{}  supposing  i-finite(I)



Date html generated: 2016_05_18-AM-08_18_30
Last ObjectModification: 2015_12_27-PM-11_56_52

Theory : reals


Home Index