Nuprl Lemma : imonomial-term-linear-req

f:ℤ ⟶ ℝ. ∀ws:ℤ List. ∀c:ℤ.  (real_term_value(f;imonomial-term(<c, ws>)) (r(c) real_term_value(f;imonomial-term(<1,\000C ws>))))


Proof




Definitions occuring in Statement :  real_term_value: real_term_value(f;t) req: y rmul: b int-to-real: r(n) real: imonomial-term: imonomial-term(m) list: List all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] imonomial-term: imonomial-term(m) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] real_term_value: real_term_value(f;t) itermConstant: "const" int_term_ind: int_term_ind uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_wf real_wf real_term_value_wf list_accum_wf int_term_wf itermConstant_wf itermMultiply_wf itermVar_wf rmul_wf int-to-real_wf req_weakening req_functionality imonomial-req-lemma rmul_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule intEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality functionExtensionality applyEquality hypothesisEquality lambdaEquality natural_numberEquality because_Cache independent_isectElimination dependent_functionElimination productElimination

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}c:\mBbbZ{}.    (real\_term\_value(f;imonomial-term(<c,  ws>))  =  (r(c)  *  real\_term\_value(\000Cf;imonomial-term(ə,  ws>))))



Date html generated: 2017_10_02-PM-07_19_03
Last ObjectModification: 2017_04_03-AM-10_50_11

Theory : reals


Home Index