Nuprl Lemma : imonomial-req-lemma

f:ℤ ⟶ ℝ. ∀ws:ℤ List. ∀t:int_term().
  (real_term_value(f;accumulate (with value and list item v):
                      (*) vv
                     over list:
                       ws
                     with starting value:
                      t))
  (real_term_value(f;t)
    real_term_value(f;accumulate (with value and list item v):
                         (*) vv
                        over list:
                          ws
                        with starting value:
                         "1"))))


Proof




Definitions occuring in Statement :  real_term_value: real_term_value(f;t) req: y rmul: b real: itermMultiply: left (*) right itermVar: vvar itermConstant: "const" int_term: int_term() list_accum: list_accum list: List all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] implies:  Q top: Top prop: uimplies: supposing a real_term_value: real_term_value(f;t) itermMultiply: left (*) right int_term_ind: int_term_ind itermVar: vvar itermConstant: "const" uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction all_wf int_term_wf req_wf real_term_value_wf list_accum_wf itermMultiply_wf itermVar_wf rmul_wf itermConstant_wf list_wf list_accum_nil_lemma real_term_value_const_lemma list_accum_cons_lemma real_wf int-to-real_wf req_weakening equal_wf req_functionality rmul-one rmul_functionality uiff_transitivity req_inversion rmul-assoc rmul-one-both rmul-ac
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality hypothesis functionExtensionality applyEquality hypothesisEquality natural_numberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache functionEquality independent_isectElimination equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}t:int\_term().
    (real\_term\_value(f;accumulate  (with  value  t  and  list  item  v):
                                            t  (*)  vv
                                          over  list:
                                              ws
                                          with  starting  value:
                                            t))
    =  (real\_term\_value(f;t)
        *  real\_term\_value(f;accumulate  (with  value  t  and  list  item  v):
                                                  t  (*)  vv
                                                over  list:
                                                    ws
                                                with  starting  value:
                                                  "1"))))



Date html generated: 2017_10_02-PM-07_18_59
Last ObjectModification: 2017_07_28-AM-07_21_17

Theory : reals


Home Index