Step
*
2
2
1
of Lemma
infn-rleq
1. I : {I:Interval| icompact(I)}
2. n : ℤ
3. 0 < n
4. f : {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
5. x : I^n
6. ∀z:{x:ℝ| x ∈ I} . (λa.(f a++z) ∈ {f:I^n - 1 ⟶ ℝ| ∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} )
7. x (n - 1) ∈ {x:ℝ| x ∈ I}
8. ∀x@0:I^n - 1. ((infn(n - 1;I) (λa.(f a++x (n - 1)))) ≤ (f x@0++x (n - 1)))
⊢ (infn(n;I) f) ≤ (f x)
BY
{ (D -1 With ⌜x⌝ THENA (DoSubsume THEN Auto)) }
1
1. I : {I:Interval| icompact(I)}
2. n : ℤ
3. 0 < n
4. f : {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
5. x : I^n
6. ∀z:{x:ℝ| x ∈ I} . (λa.(f a++z) ∈ {f:I^n - 1 ⟶ ℝ| ∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} )
7. x (n - 1) ∈ {x:ℝ| x ∈ I}
8. (infn(n - 1;I) (λa.(f a++x (n - 1)))) ≤ (f x++x (n - 1))
⊢ (infn(n;I) f) ≤ (f x)
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. n : \mBbbZ{}
3. 0 < n
4. f : \{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
5. x : I\^{}n
6. \mforall{}z:\{x:\mBbbR{}| x \mmember{} I\}
(\mlambda{}a.(f a++z) \mmember{} \{f:I\^{}n - 1 {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n - 1. (req-vec(n - 1;a;b) {}\mRightarrow{} ((f a) = (f b)))\} )
7. x (n - 1) \mmember{} \{x:\mBbbR{}| x \mmember{} I\}
8. \mforall{}x@0:I\^{}n - 1. ((infn(n - 1;I) (\mlambda{}a.(f a++x (n - 1)))) \mleq{} (f x@0++x (n - 1)))
\mvdash{} (infn(n;I) f) \mleq{} (f x)
By
Latex:
(D -1 With \mkleeneopen{}x\mkleeneclose{} THENA (DoSubsume THEN Auto))
Home
Index