Step
*
of Lemma
m-cont-real-fun-is-mfun
∀[X:Type]. ∀[d:metric(X)]. ∀[f:X ⟶ ℝ]. (m-cont-real-fun(X;d;x.f[x])
⇒ λx.f[x]:FUN(X;ℝ))
BY
{ (RepUR ``so_apply`` 0
THEN Auto
THEN D 0
THEN Auto
THEN RepUR ``so_apply rmetric meq`` 0
THEN (Assert ⌜(f x1) = (f x2)⌝⋅ THENM (RWO "-1" 0 THEN Auto THEN nRNorm 0 THEN Auto))
THEN RWO "req-iff-rabs-rleq" 0
THEN Auto
THEN (D 4 With ⌜(r1/r(m))⌝ THENA Auto)
THEN ExRepD
THEN InstHyp [⌜x1⌝;⌜x2⌝] (-1)⋅
THEN Auto) }
1
.....antecedent.....
1. X : Type
2. d : metric(X)
3. f : X ⟶ ℝ
4. x1 : X
5. x2 : X
6. x1 ≡ x2
7. m : ℕ+
8. delta : {e:ℝ| r0 < e}
9. ∀x,x':X. ((mdist(d;x;x') < delta)
⇒ (|(f x) - f x'| < (r1/r(m))))
⊢ mdist(d;x1;x2) < delta
Latex:
Latex:
\mforall{}[X:Type]. \mforall{}[d:metric(X)]. \mforall{}[f:X {}\mrightarrow{} \mBbbR{}]. (m-cont-real-fun(X;d;x.f[x]) {}\mRightarrow{} \mlambda{}x.f[x]:FUN(X;\mBbbR{}))
By
Latex:
(RepUR ``so\_apply`` 0
THEN Auto
THEN D 0
THEN Auto
THEN RepUR ``so\_apply rmetric meq`` 0
THEN (Assert \mkleeneopen{}(f x1) = (f x2)\mkleeneclose{}\mcdot{} THENM (RWO "-1" 0 THEN Auto THEN nRNorm 0 THEN Auto))
THEN RWO "req-iff-rabs-rleq" 0
THEN Auto
THEN (D 4 With \mkleeneopen{}(r1/r(m))\mkleeneclose{} THENA Auto)
THEN ExRepD
THEN InstHyp [\mkleeneopen{}x1\mkleeneclose{};\mkleeneopen{}x2\mkleeneclose{}] (-1)\mcdot{}
THEN Auto)
Home
Index