Nuprl Lemma : m-cont-real-fun-is-mfun
∀[X:Type]. ∀[d:metric(X)]. ∀[f:X ⟶ ℝ].  (m-cont-real-fun(X;d;x.f[x]) 
⇒ λx.f[x]:FUN(X;ℝ))
Proof
Definitions occuring in Statement : 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
is-mfun: f:FUN(X;Y)
, 
rmetric: rmetric()
, 
metric: metric(X)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
rmetric: rmetric()
, 
meq: x ≡ y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
metric: metric(X)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
, 
req_int_terms: t1 ≡ t2
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
req-iff-rabs-rleq, 
rless-int-fractions2, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
intformand_wf, 
int_formula_prop_and_lemma, 
rless_wf, 
rleq_weakening_rless, 
rabs_wf, 
rsub_wf, 
nat_plus_wf, 
meq_wf, 
m-cont-real-fun_wf, 
req_witness, 
rmetric_wf, 
real_wf, 
metric_wf, 
istype-universe, 
itermSubtract_wf, 
req-int, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
req_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
req_transitivity, 
rabs-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
sq_stable__rless, 
mdist_wf, 
rless_functionality, 
mdist-same, 
mdist_functionality, 
meq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
isectElimination, 
setElimination, 
rename, 
multiplyEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
dependent_set_memberEquality_alt, 
closedConclusion, 
because_Cache, 
inrFormation_alt, 
independent_pairFormation, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
functionIsType, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f:X  {}\mrightarrow{}  \mBbbR{}].    (m-cont-real-fun(X;d;x.f[x])  {}\mRightarrow{}  \mlambda{}x.f[x]:FUN(X;\mBbbR{}))
Date html generated:
2019_10_30-AM-06_27_29
Last ObjectModification:
2019_10_02-AM-10_02_43
Theory : reals
Home
Index