Nuprl Lemma : m-cont-real-fun-is-mfun

[X:Type]. ∀[d:metric(X)]. ∀[f:X ⟶ ℝ].  (m-cont-real-fun(X;d;x.f[x])  λx.f[x]:FUN(X;ℝ))


Proof




Definitions occuring in Statement :  m-cont-real-fun: m-cont-real-fun(X;d;x.f[x]) is-mfun: f:FUN(X;Y) rmetric: rmetric() metric: metric(X) real: uall: [x:A]. B[x] so_apply: x[s] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T implies:  Q is-mfun: f:FUN(X;Y) all: x:A. B[x] rmetric: rmetric() meq: x ≡ y iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q m-cont-real-fun: m-cont-real-fun(X;d;x.f[x]) nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rneq: x ≠ y guard: {T} rless: x < y sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] subtype_rel: A ⊆B metric: metric(X) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) absval: |i| req_int_terms: t1 ≡ t2 sq_stable: SqStable(P) squash: T
Lemmas referenced :  req-iff-rabs-rleq rless-int-fractions2 nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermMultiply_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rdiv_wf int-to-real_wf rless-int intformand_wf int_formula_prop_and_lemma rless_wf rleq_weakening_rless rabs_wf rsub_wf nat_plus_wf meq_wf m-cont-real-fun_wf req_witness rmetric_wf real_wf metric_wf istype-universe itermSubtract_wf req-int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma req_functionality rabs_functionality rsub_functionality req_weakening req_transitivity rabs-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma sq_stable__rless mdist_wf rless_functionality mdist-same mdist_functionality meq_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin applyEquality hypothesisEquality hypothesis productElimination independent_functionElimination natural_numberEquality isectElimination setElimination rename multiplyEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType dependent_set_memberEquality_alt closedConclusion because_Cache inrFormation_alt independent_pairFormation inhabitedIsType equalityTransitivity equalitySymmetry functionIsTypeImplies functionIsType isectIsTypeImplies instantiate universeEquality minusEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f:X  {}\mrightarrow{}  \mBbbR{}].    (m-cont-real-fun(X;d;x.f[x])  {}\mRightarrow{}  \mlambda{}x.f[x]:FUN(X;\mBbbR{}))



Date html generated: 2019_10_30-AM-06_27_29
Last ObjectModification: 2019_10_02-AM-10_02_43

Theory : reals


Home Index